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contributions in each of these areas. 

Thesis Supervisor: Prof. Henrik Schmidt 
Professor of Ocean Engineering, MIT 

WHOI Advisor: Dr. James Lynch 
Associate Scientist, WHOI 



Acknowledgments 

I would like to thank Henrik Schmidt for serving as thesis advisor and Art Baggeroer, 

Jim Lynch, Jim Preisig, and Alan Willsky for serving as the thesis committee. I would 

also like to thank Jim Bellingham for serving as chairman of the thesis defense, and 

Tom Curtin of the ONR Arctic Programs Office for support of this work. 



Contents 

1 Introduction 12 

2 Position Estimation 17 

2.1 Positioning Systems  18 

2.1.1 Spherical Positioning  19 

2.1.2 Hyperbolic Positioning  22 

2.1.3 Positioning with Time Synchronization  28 

2.2 Position Estimators  34 

2.2.1 Vehicle Sitting Still  37 

2.2.2 Vehicle Moving  39 

2.3 Optimal Navigation  41 

2.3.1 Path Parameterization  42 

2.3.2 Optimization Algorithm  44 

2.3.3 Examples of Optimal Navigation      48 

2.4 Conclusion  51 

3    Sound Speed Estimation 53 

5 



3.1 The Forward Problem      55 

3.1.1    Ray Sampling Functions  59 

3.2 The Inverse Problem  62 

3.3 Weight Estimators     64 

3.3.1 Suboptimal estimators  65 

3.3.2 Optimal Estimator  67 

3.4 Basis Functions  71 

3.4.1 Empirical Orthogonal Functions  71 

3.4.2 Optimal Orthogonal Functions  73 

3.5 Examples  75 

3.5.1 Temperate Example  75 

3.5.2 Arctic Example  79 

3.6 Using Estimated Profile Covariance Matrices  83 

3.6.1 The Covariance Matrix Estimate  83 

3.6.2 Weighting the Noise Covariance Diagonal  84 

3.6.3 Wrapping Profile Covariance into Noise  85 

3.6.4 Comparison of Methods      85 

3.7 Optimal Moving Source Tomography  86 

3.7.1 Tomographie Resolution  91 

3.7.2 Optimal Tomography  94 

3.8 Conclusion  98 

4   Arrival Matching 99 

6 



4.1 Test Scenario  99 

4.2 Simple Ordering  103 

4.3 Validation Windows  105 

4.4 Independent Matching  107 

4.5 Correlated matching algorithm  112 

4.6 Advantage of the Correlated Matcher  119 

4.7 Future Direction  123 

4.8 Conclusion  124 

5 Test Experiments 125 

5.1 Multipath Navigation  126 

5.1.1 Simulation of Noise Effects  129 

5.1.2 Simulation of Blocking  130 

5.1.3 Demonstration Plot  132 

5.2 Moving Source Tomography  134 

5.2.1 Estimator Options      134 

5.2.2 Experiment Description      136 

6 Conclusion 145 



List of Figures 

1-1    Block diagram of moving source tomography system  14 

2-1    Spherical positioning  20 

2-2    Cramer-Rao bound in meters for spherical position estimate  23 

2-3    Hyperbolic positioning  25 

2-4    Cramer-Rao bound in meters for hyperbolic position estimate  27 

2-5    Transition from spherical to hyperbolic performance as shown by pos- 

ition Cramer-Rao bounds in meters  32 

2-6    Cramer-Rao bound for time synchronization estimate in milliseconds. 33 

2-7    Vehicle location  39 

2-8    Position estimate accuracy  40 

2-9    Vehicle path  42 

2-10 Position estimate accuracy comparison  43 

2-11 Feasible perturbation region  45 

2-12 Feasible region with bounding rectangle  47 

2-13 Optimal navigation, 31 transmissions  50 

2-14 Optimal navigation, 51 transmissions  50 

8 



2-15 Optimal navigation, 51 transmissions, different starting point  51 

3-1    Profiles for the three ray sampling functions  59 

3-2    A sampling function and ray for profile 1-constant sound speed.   ... 60 

3-3    A sampling function and ray for profile 2-the Arctic profile  61 

3-4    A sampling function and ray for profile 3-the temperate profile. .... 62 

3-5    Sound speed profile and eigenrays for the temperate example  77 

3-6    Sampling functions and profile variations for the temperate example. . 78 

3-7    The EOF and OOF for the temperate example  78 

3-8    Sound speed profile and eigenrays for the Arctic example  81 

3-9    Sampling functions and profile variations for the Arctic example.  ... 81 

3-10 The EOF and OOF for the Arctic example  82 

3-11 Comparison of MSE achieved as a function of <r, temperate case. ... 87 

3-12 Comparison of MSE achieved as a function of <r, Arctic case  87 

3-13 Rays with fixed source  88 

3-14 Rays with moving source  89 

3-15 Rays with fixed source  90 

3-16 Rays with moving source  90 

3-17 Sound speed profile and basis function  92 

3-18 Sound speed estimate variance  93 

3-19 Sound speed profile and basis functions  95 

3-20 Sound speed estimate variance for stationary, moving, and optimal mov- 

ing source tomography (first region of interest)  96 

9 



3-21 Sound speed estimate variance for stationary, moving, and optimal mov- 

ing source tomography (second region of interest)  97 

4-1    Predicted profile and profile variation  101 

4-2    True profiles and eigenrays for predicted profile  101 

4-3    Predicted arrival times and measured arrival times for parameter values 

of 1 to 20  102 

4-4    Ordered matching  104 

4-5    Error for ordered matching  105 

4-6    Validation window matcher  106 

4-7    Estimate error using validation window matcher  107 

4-8    Independent matching  112 

4-9    Error for independent matching  113 

4-10 Correlated matching  115 

4-11 Error comparison  116 

4-12 Number of possible matches  117 

4-13 Width of tree  119 

4-14 Region where tomography is possible using standard arrival matching 

methods  121 

4-15 Region where tomography is possible using correlated matching method. 122 

5-1    Block diagram of the multipath positioning system  127 

5-2    Positioning demonstration setup (top view)  128 

5-3    Ray blocking by shallow region      131 

10 



5-4    Error magnitude (in meters) for both systems, and arrival times of 

eigenrays from the three beacons      133 

5-5    Mean sound speed profile and profile variations  137 

5-6   Optimal transmission depths  139 

5-7    Fraction of errors lying within one theoretical standard deviation (should 

be 0.683)  139 

5-8    Mean sound speed profile and profile variations  141 

5-9    Optimal transmission depths  142 

5-10 Parameter estimate errors and theoretical standard deviation  142 

5-11 Fraction of errors lying within one theoretical standard deviation (should 

be 0.683)  143 

11 



Chapter 1 

Introduction 

Ocean Acoustic Tomography estimates the two- or three-dimensional sound speed 

structure in a volume of water by measuring acoustic travel times along ray paths 

traversing the volume [37, 36]. In a typical application, acoustic sources and receiver 

arrays are placed around the volume of interest. The acoustic travel times along the 

multiple eigenrays connecting each source and receiver are predicted based on an ini- 

tial estimate of parameters describing the sound speed structure. The actual acoustic 

travel times are then measured for each eigenray. The differences between measured 

and predicted travel times for the various eigenrays can be linearly related to paramet- 

ers describing variations in the sound speed structure, assuming that these variations 

are not too large. Based on this linear relationship, an inversion can be performed to 

determine the sound speed parameters. This technique has been successfully applied 

to estimate sound speed fields in a number of experiments [47]. 

The sensitivity of the acoustic travel times to a particular sound speed variation is 

highly dependent on the source and receiver locations. By using mobile sources sus- 

12 



pended from ships [8] or mounted on autonomous underwater vehicles [14] it is possible 

to obtain measurements from many more locations and to determine the sound speed 

field to a much higher level of accuracy than would be possible with fixed sources. 

This thesis examines the use of mobile sources in ocean acoustic tomography. It lays 

a foundation of improved and in some cases optimal algorithms for acoustic position 

measurement, for sound speed parameterization and inversion, and for eigenray iden- 

tification. It introduces source path planning for optimal measurement accuracy, and 

simulates the performance of all algorithms in realistic ocean environments. 

Throughout this thesis, it is assumed that sound propagation is described well 

by a ray model, and ray models will be used exclusively. Acoustic tomography has 

also been performed using characteristics of mode propagation, but these methods are 

outside the scope of the present work. 

The overall structure of a moving source tomography system is shown in Fig. 1- 

1. This system takes as its input the received acoustic signal and generates as its 

output source location [13] and parameters describing sound speed variability [10]. 

The functions of sound speed estimation and position estimation are included in the 

same system because the problems are tightly coupled. Accurate acoustic positioning 

depends on accurate sound propagation models, and accurate acoustic tomography 

requires that the source and receiver positions be known. Each block in Fig. 1-1 is 

described in greater detail below, and the contributions of the thesis to each block are 

outlined. 
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Figure 1-1: Block diagram of moving source tomography system. 

Ray Tracing Model The ray tracing model block predicts the travel times along 

the rays connecting each source and receiver based on the current estimate of sound 

speed parameters and source location. The construction of ray tracing models is 

well-documented in the literature [26]. 

Arrival Detector The arrival detector block breaks down the received acoustic 

signal into its component ray arrivals and determines the time of each arrival. The 

decomposition of a received signal into time delayed, amplitude scaled replicas of the 

transmitted signal is well documented in the signal processing literature [20, 4. 45]. 

In cases where the measured travel times are calculated from actual or simulated 

received signals, the travel time estimators are kept simple and standard in order to 

illustrate the robustness of the new arrival identification and inversion algorithms. 

Arrival Matcher As position or sound speed parameters change, the measured 

arrivals will tend to either shift linearly in time or disappear. Because of these dual 

aspects of arrival behavior, the inversion process is divided into two stages.    The 
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first stage is the arrival matcher block which attempts to match the measured arrival 

times with the predicted arrival times to which they are linearly related, allowing for 

the possibility that some arrivals may not have matches. When a measured arrival 

is identified with a predicted arrival, a prediction error can be calculated as the 

difference between the measured arrival time and the predicted arrival time. Chapter 4 

introduces the arrival matching problem. The commonly used methods are discussed 

as well as their shortcomings. Two new arrival matching techniques are presented. 

The first of these is sub-optimal but is fast and handles arrival fading well. The second 

is a powerful algorithm which takes into account correlations between the time shifts 

of different arrivals. The performance of the new algorithms is compared with the 

standard methods. 

Linear Inversion The arrival time prediction errors are used by the linear inversion 

block to update the estimate of sound speed parameters and source location. Chapter 

2 considers the estimation of source position and the coupling between position errors 

and time synchronization errors. A mathematical relationship between spherical and 

hyperbolic positioning is derived and illustrated graphically, and the performance of 

a system which estimates both source position and transmit time synchronization is 

considered. It is observed that the accuracy of a vehicle position estimate depends not 

only on the present location of the vehicle but also on the path followed in reaching 

the present location. This leads to formulation and solution of the optimal navigation 

problem of determining the path to a destination which will result in the least error 

in the position estimate upon reaching the destination. 
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Chapter 3 considers the estimation of sound speed profile parameters. The way 

in which rays sample the sound speed field is formalized by defining ray sampling 

functions such that the projection of a sound speed profile variation onto a ray sampling 

function is the travel time change which that profile variation causes in the given ray. 

These sampling functions prove instrumental in deriving the optimal estimator for 

sound speed variability and the optimal parameterization for a sound speed field. The 

ability of a tomography measurement to resolve a given sound speed variation is highly 

dependent on the source and receiver positions. Based on this dependence, optimal 

paths are found for moving acoustic sources to focus measurement accuracy at specific 

features of interest in the environment. 

Example Missions Chapters 2 through 4 describe the various component techno- 

logies which comprise optimal moving source tomography. Chapter 5 integrates the 

algorithms of the previous chapters into a single system and tests the system perform- 

ance in several simulated missions. The ultimate test of the system is of course its 

performance in the field, and the example missions are in fact a sequence of recom- 

mended field tests to demonstrate the algorithms developed in this thesis. 
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Chapter 2 

Position Estimation 

This chapter considers the estimation of position from acoustic travel time measure- 

ments. Acoustic positioning systems have traditionally fallen into two categories, 

spherical and hyperbolic [35, 43, 6]. Spherical positioning systems determine position 

by measuring acoustic travel times from beacons at known locations. To make this 

travel time measurement, the receiver must know exactly when each beacon transmit- 

ted. Hyperbolic positioning systems determine position by measuring differences in 

travel time between signals from the beacons. The hyperbolic receiver does not need 

to know when the beacons transmitted, only that they all transmitted at the same 

time or with known delays relative to each other. The spherical system, which must 

know transmit time exactly, and the hyperbolic system, which does not know transmit 

time at all can be seen as the two endpoints of a continuum of systems parameterized 

by the accuracy with which the transmit time is known. This continuum is shown 

to exist for an arbitrary number of beacons in an arbitrary dimensional space. It is 

illustrated for the case of three beacons in a two dimensional space. 
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Hyperbolic positioning produces much larger position estimate errors than does 

spherical positioning near the baseline extensions. When the beacons transmit at reg- 

ular time intervals, however, a hyperbolic system can approach spherical performance 

levels by estimating transmit time in order to synchronize itself with the master beacon 

clock. Examples of position estimation with clock synchronization are presented for 

both stationary and moving vehicles. An approximate condition is given under which 

estimating time synchronization can improve position estimate accuracy. 

The accuracy of position and clock synchronization estimates depends on the loc- 

ation of the vehicle with respect to the beacons. Position and particularly clock 

synchronization cannot change infinitely quickly, and so past measurements as well 

as the present measurement contain information about the present position and clock 

synchronization. Putting these two facts together, it is observed that for a moving 

vehicle, the present position estimate depends not only on where the vehicle is, but 

also on the path which it followed in getting there. Optimal navigation seeks to select 

the path between a fixed origin and destination which minimizes the position estimate 

error achieved at the destination. In this chapter, the optimal navigation problem is 

developed and solved using the method of simulated annealing, and optimal paths are 

shown for several examples. 

2.1    Positioning Systems 

Most underwater acoustic positioning systems are either spherical or hyperbolic in 

design. These two systems are analyzed, and a third system is introduced-one which 

18 



operates in a hyperbolic beacon network but estimates transmit time in addition to 

position in an attempt to come closer to spherical performance levels. 

2.1.1    Spherical Positioning 

Spherical positioning systems determine position by measuring acoustic travel times 

from beacons at known locations. In practice this is often accomplished by transpond- 

ing with the beacons so that a two-way travel time is measured and then divided by 

two. The travel times are converted to ranges, and each range measurement defines a 

sphere, centered at the beacon, on which the receiver must lie. Range measurements 

from several beacons provide several spheres, the intersection of which is the position 

of the receiver. In Figure 2-1, the beacons are shown by black circles, and the receiver 

is shown by a black square. The range from each beacon to the receiver defines a 

circle around that beacon on which the source must lie. The point where all three 

circles intersect is the position of the receiver [35, 43]. 

Positioning is considered in an M dimensional space (in general M — 2 or 3), where 

position is determined by range measurements from N beacons. The range from the 

nth beacon to the source at x = [x1,x2-, ■ ■ ■ ,XM]
T
 can be found by the Pythagorean 

theorem as. 

M 

\    Yl  (X™ - XBnm)   • (2-1) 
\ m=l 

r„(x) = 

The acoustic travel time measured from the nth beacon is then, 
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Figure 2-1: Spherical positioning. 

20 



iB(x) = ^ + vn (2.2) 

where c is the speed of sound (assumed throughout this chapter to be independent 

of position), and vn is measurement noise which is assumed to be zero-mean Gaussian. 

The vehicle will attempt to determine its position x from the vector consisting 

of travel time measurements from each beacon t. The Cramer-Rao bound gives a 

lower bound on the covariance of an unbiased position estimate formed from this 

measurement. To calculate this bound, it is necessary to linearize the non-linear 

equation (2.2) about the position at which the bound is to be calculated, x. Define, 

t = t(x) - £[t(x)] (2.3) 

x = x-x (2.4) 

This linearized equation is, 

t = Cx + v (2.5) 

The matrix of partial derivatives C can be calculated, 

_      0E[tn(x)] 
dxT 
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1 Xm       %Bnm Icy a\ 

~    c      rn(x) 

The Cramer-Rao bound for the position estimate is [39], 

CRBs =[CTR-1C]_1, (2.7) 

where R is the measurement noise covariance matrix, R = E[vvT]. The standard 

deviation of the position estimate given by this bound is shown as a function of position 

in Figure 2-2. For this figure, the sound speed is 1500 m/s, the measurement errors 

are independent identically distributed Gaussian random variables with zero mean 

and standard deviations of 1 ms, and the beacons are placed at the locations indicated 

by the black circles. 

Notice that the position resolution is better toward the center of the beacon net- 

work, but is still fairly good in far away corners. Along a baseline extension, two rows 

of the measurement matrix C become identical, but in this example of three beacons 

in a two-dimensional space, the position estimate is still uniquely determined along 

the baseline extensions. Geometrically speaking, two circles of position are tangent 

along the baseline extensions, but there is a third circle which provides the second 

position constraint. 

2.1.2    Hyperbolic Positioning 

Hyperbolic positioning systems determine position by measuring differences in travel 

times between signals from the various beacons, which are assumed to be synchronized 
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Figure 2-2: Cramer-Rao bound in meters for spherical position estimate. 
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with eachother but not with the receiver. This synchronization may be accomplished 

by providing a common time base (such as GPS time) to all beacons or by having 

slave beacons trigger of the acoustic transmission of a single master beacon. The 

differences in travel times are converted to differences in ranges to the beacons, and 

each range difference defines a hyperboloid (3-dimensional hyperbola) on which the 

receiver must lie. Several of these range differences give several hyperboloids, the 

intersection of which is taken to be the position of the receiver. In Figure 2-3, the 

beacons are shown by black circles, and the receiver is shown by a black square. The 

left hyperbola is determined by the difference in range from the receiver to the top 

beacon and the receiver to the left bottom beacon. The right hyperbola is determined 

by the difference in range from the receiver to the top beacon and the receiver to the 

right bottom beacon. The intersection of these two hyperbola is the position of the 

receiver. The advantage of the hyperbolic system is that it does not use the time at 

which the beacons transmit in its calculations, so that the receiver does not need to be 

synchronized with the beacons. The travel time differences can be found as long as the 

beacons transmit at the same time, or with known delays relative to each other. The 

disadvantage of the hyperbolic system is that it provides poorer position resolution 

than the spherical system, particularly at the fringes of the beacon network [35, 43]. 

The hyperbolic positioning system measures the differences in travel times to the 

various beacons. The linearized equation (2.5) can be modified to create the rela- 

tionship between position and travel time difference by multiplying by the matrix 

M 
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Figure 2-3: Hyperbolic positioning. 
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-1 

M = (2.8) 

-1 

The linearized hyperbolic positioning equation is then, 

Mt = MCx + Mv. (2.9) 

By comparison with the spherical system (2.5) and bound (2.7), the the Cramer- 

Rao bound for the hyperbolic system is found to be, 

CRB H C
T
M

T
(MRM

T
) 'MC 

-1 
(2.10) 

The standard deviation of the position estimate given by this bound is shown as a 

function of position in Figure 2-4. As in Figure 2-2, the sound speed is 1500 m/s, the 

measurement errors are independent identically distributed Gaussian random variables 

with zero mean and standard deviations of 1 ms, and the beacons are placed at the 

locations indicated by the black circles. 

Notice the greatly deteriorated position resolution outside the center of the beacon 

network. The resolution is particularly poor along the baseline extensions. Along 

a baseline extension, two rows of the hyperbolic measurement matrix MC become 

identical. In the example of three-beacons in two-dimensional space, the hyperbolic 

measurement matrix is square, and when two rows become identical along the baseline 

extensions, the position estimate becomes underdetermined. Geometrically speaking, 
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Figure 2-4: Cramer-Rao bound in meters for hyperbolic position estimate. 
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two hyperbolas of position are tangent along a baseline extension, so with only two 

hyperbolas available, position is unconstrained in the tangent direction. 

2.1.3    Positioning with Time Synchronization 

In the spherical positioning system, the transmit time of the beacons must be known 

exactly so that travel times can be determined. In the hyperbolic positioning system, 

the transmit time falls out of the equations when the travel time differences are taken. 

The spherical system, which requires zero variance in the transmit time estimate, and 

the hyperbolic system, which allows infinite variance in the transmit time estimate, 

represent the endpoints of a continuum of intermediate systems in which the transmit 

time is known with a finite, but non-zero, variance [10]. In this section, it is shown that 

the spherical and hyperbolic bounds are indeed the endpoints of a whole continuum 

of bounds for systems in which the transmit time variance ranges between zero and 

infinity. 

We will now consider a system in which the beacons all transmit at a predetermined 

time. The vehicle knows the scheduled transmit time, but its internal clock may be 

running fast or slow with respect to the beacons. Because of this clock synchronization 

error, the vehicle will miscalculate all the travel times by a constant amount, which 

will be called r. The measured travel time now consists of the true travel time plus 

a time synchronization error plus measurement noise, and the linearized navigation 

equation (2.5) can be extended to reflect this. 

28 



t = Cx + rl + v, (2.11) 

where 1 is the N x 1 vector with all elements equal to one. If T is treated as a 

random variable with zero mean and variance a^, this time synchronization error can 

be grouped into the error covariance matrix which becomes o^ll   + R. 

Using this new measurement covariance in (2.7), the Cramer-Rao bound on po- 

sition for a system having a time synchronization error with standard deviation aT 

is 

C RBx = CT(^IIT + R) 'C (2.12) 

Next, it is shown that the limit of this equation as aT —>■ 0 is the Cramer-Rao 

bound for spherical positioning, and the limit as <rT —> oo is the Cramer-Rao bound 

for hyperbolic positioning. 

The Spherical Positioning limit, a\ -» 0    In the limit a\ -> 0, performance 

approaches that of the spherical positioning system in (2.7). 

lim CRBT   =    lim [CT (a2
rll

T + R)   ' C]"1 

<T?-V0 ai-+0 

[CTR^C]"1 

CRBS. 
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The Hyperbolic Positioning limit, a2. -»■ oo     Verifying the hyperbolic limiting 

case is somewhat more complicated. To evaluate the limit, a matrix N is introduced 

N = 
1   1   •••   1 

M M 

(2.14) 

where the lower submatrix M is the one defined in (2.8). Note here that the first 

row of N is orthogonal to all of its other rows, and that N is symmetric and invertible. 

lim CRBT   =     lim [CT (a2
T\l

T + R)   * C]"1 

lim 
-r-2 —Lrv 

TN-1I CW^N^ll' +R)N1)"1NC 

CTNT     Urn [Ntf!!1 + ^N1]"1   NC 

CTNT  lim 
<rj—>OO 

N2a2
T + 1TR1 

MR1 

1TRMT 

MRM: 

-l 

NC 

Using the relation that for a partitioned matrix A, where 

A = 
Ai    A2 

A3   A4 

(2.15) 

(2.16) 
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the inverse can be written [3], 

A"* = 
(Ax - A2A41A3)-

1 

-A4
1A3(A1 - A2A4

aA3) -l 

-1 A     \-l -Ai1A2(A4-A3Ai1A2) 

-1 A    W (A4-A3Ar1A2) 

,    (2.17) 

the calculation continues from (2.15) after taking the limit of the inverse, 

lim CRBT   = CTNT 

[MRM
T

] 
NC 

-i 

CTMT (MRMT) 'MC 

=   CRB H- (2.18) 

This bound is the same as the one derived for the hyperbolic positioning system 

in (2.10), which demonstrates that the performance approaches that of the hyperbolic 

positioning system in the limit where the uncertainty in transmit time becomes infinite. 

Figure 2-5 shows the spherical and hyperbolic endpoints of the performance bounds, 

as well as some intermediate values. It is clear from Figure 2-5 that even a rough 

estimate of the time synchronization can greatly improve the positioning accuracy, 

particularly in the regions of the baseline extensions. 

In Figure 2-6, the Cramer-Rao bound for the time synchronization estimate is 

shown. Contour labels are in milliseconds. The ability to estimate time synchroniza- 

tion is greatest in the center of the positioning array, and poorest along the baseline 
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Figure 2-6: Cramer-Rao bound for time synchronization estimate in milliseconds. 

extensions. 

Position errors and time synchronization errors are coupled. In a hyperbolic pos- 

itioning system, each point along a hyperbola of position corresponds to a particular 

time synchronization. In general, when a time synchronization error occurs, the posi- 

tion estimate will be pulled in different directions by the different hyperbolas of posi- 

tion. Along a baseline extension, however, two hyperbolas of position become tangent, 

and if there are a total of only two hyperbolas of position, time synchronization errors 

and vehicle position errors along the tangent direction become indistinguishable. 
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2.2    Position Estimators 

The fact that hyperbolic and spherical positioning systems represent the two end- 

points of a continuum of possible performance levels has practical consequences. If 

the beacons in a hyperbolic navigation system repeat their transmissions at regular 

time intervals, it is possible to produce a running estimate of the transmit time. The 

accuracy of this synchronization determines where the system lies in the performance 

continuum between hyperbolic and spherical positioning. In many underwater applic- 

ations, this synchronization actually affords significant improvement over hyperbolic 

performance bounds [11]. A simulation is conducted to demonstrate this, and the 

conditions are discussed under which estimating transmit time provides a substantial 

improvement in position accuracy. 

The Cramer-Rao bounds describe the amount of information available about one 

set of unconstrained variables from a single noisy observation of another set of vari- 

ables. If multiple observations are possible, and if the covariance matrix of the vari- 

ables to be estimated is known, improved estimates can be obtained. The Kaiman 

filter provides a framework for incorporating both the multiple observations over time 

and the covariance matrix for the variables of interest [22]. 

In the examples which follow, vehicle position and time synchronization, which 

we will call the vehicle state, will be estimated over the course of simulated vehicle 

missions. During a mission, the beacons will transmit K times, so the estimator will 

go through K iterations. There are three steps per iteration, a prediction step in which 

the new vehicle state at the time of a transmission is predicted, a linearization step 
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where a linear approximation of the relationship between arrival time change and state 

change is calculated centered about the current state estimate, and a correction step 

in which the measured arrival times are used to correct the state prediction. These 

three steps are described in greater detail below. 

Prediction As the vehicle moves between acoustic transmissions, models of vehicle 

dynamics and clock drift attempt to predict the change in state. In this thesis, we 

will not touch on models of vehicle dynamics or models of clock drift, but will simply 

assume that when such models have given their best prediction, an additional error 

has accumulated in the state described by the zero-mean Gaussian vector w(/c), which 

has covariance matrix Q. The true state estimate error will be the vector z, 

x 
(2.19) 

Let z(k\k) be the error at the fcth iteration based on travel time measurements up 

to the kth transmission, and z(fc + 1|A;) will be the state estimate error at the k + 1th 

iteration based on measurements up to the kth transmission, i.e. the error after the 

prediction phase but prior to the measurement phase of the k + 1 iteration. 

z(k + l\k) = z{k\k) + w{k) (2.20) 

The covariance matrix of z will be P, which evolves as, 

P(fc + l|fc) = P(fc|fc) + Q (2.21) 
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Once the state is predicted, the arrival times based on the new state prediction are 

calculated. 

Linearization In the linearization step, the equations relating travel time changes 

to state changes are relinearized around the new state estimate which was formed in 

the prediction step. The differences y(fc) between the measured and predicted arrival 

times can be related to the state estimate errors, 

y(k) = H(k)z(k\k) + n(fc) (2.22) 

where this equation has been linearized about the position prediction 5L(k\k - 1) 

from the predicted vehicle state vector, so that 

H(fc) = C(x(fc|fc-1)) 1 (2.23) 

Correction    In the correction step, the vehicle will use the measured arrival times 

to correct its state estimate. The correction added to the predicted state is, 

z(k\k) = P(k\k - mT(k) (U(k)P(k\k - l)HT(/c) + R)"
1
 y(fc). (2.24) 

The covariance of the new state estimate acquired by adding this correction to the 

old predicted state is, 
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-1 
P(k\k) = P(fc|fc-l)-P(fc|fc-l)HT(fc) (H(fc)P(fc|fc - l)HT(fc) + R)    H(fc)P(fc|fc-l) 

(2.25) 

This process of prediction, linearization, and correction is carried out for each of 

the K beacon transmissions which compose the vehicle mission. 

Implementation Issues 

The time synchronization errors measured in seconds will tend to be small compared 

to the position errors measured in meters. To avoid the computational problems which 

this can create, the actual software uses units of milliseconds to express time errors, 

though the equations in this thesis are setup to use standard MKS units. 

There is a complexity for a moving vehicle in that the three beacons are not heard 

by the vehicle at the same location, because the vehicle moves some distance in the 

time interval between when the first and last beacons are heard. Incorporating this 

complexity into the calculation adds little insight, so for purposes of this thesis, it will 

be assumed that the travel times have already been back-corrected so that the travel 

times from all three beacons correspond to the vehicle being at the same location. 

2.2.1    Vehicle Sitting Still 

In the first example, the beacons are arranged as shown by the grey spots in Fig. 2-7. 

The beacons transmit 21 times during this mission, while the vehicle attempts to hold 

station at (x, y) = (1000, —1500), the point indicated by the circle labeled "vehicle" on 
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Fig. 2-7. The vehicle will attempt to estimate both position and time synchronization, 

and the accuracy of its position estimate will be graphed over the course of the 21 

receptions. The position estimate accuracy will be compared with the hyperbolic and 

spherical bounds for three different sizes of clock drift errors. The system errors are 

chosen to be realistic for a vehicle receiving transmissions every 50 seconds and using 

a crystal oscillator as its time base. The system errors are as follows: 

• Initial position variance (m2): 1002 (in each axis) 

• Initial time sync, variance (s2): l2 

• Travel time measurement variance (s2): 0.0012 

• Increase in position variance between transmissions (m2): 202 (in each axis) 

• Increase in time sync, variance between transmissions (s2): (10~4)2, (10~3)2, (10" ) 

The position errors for spherical and hyperbolic navigation are shown in Fig. 2- 

8 in solid lines (labeled to the right of the graph). These lines are lower and upper 

bounds respectively on the position error of the system which attempts to estimate time 

synchronization. The lower the drift which the receiver clock experiences, the closer 

to the spherical performance limit the position estimates come. Roughly speaking, 

the time synchronization estimate is only useful if the clock drift per second converted 

to an equivalent range drift per second is smaller than range drift of the receiver 

navigation sensors. 

cAr < Ax, (2.26) 
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Figure 2-7: Vehicle location. 

where c is the speed of sound. When this condition fails, time synchronization 

information is lost too quickly to be useful compared to position information. A 

consequence of this is that while this technique is helpful in improving resolution for 

acoustic positioning, where c = 1500m/.s, it provides little improvement for radio 

positioning systems like LORAN, where c = 3x 108m/.s, without a very stable time 

base. 

2.2.2    Vehicle Moving 

In this second example, the beacon arrangement is the same, but the vehicle will be 

moving. The initial transmission will be heard by the vehicleat (x, y) = (—1000, —1500). 

Between transmissions the vehicle will move 100m in the x-direction, so that on the 
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last transmission it ends its mission at (x,y) = (1000,-1500). This vehicle path is 

shown in Fig. 2-9, with the dots indicating the points at which transmissions are 

heard. The accuracy of the position estimate will be graphed over the course of the 

21 receptions. The system errors are as in the previous example and are reasonable 

for a dead reckoning vehicle traveling at 2m/s. 

The results of this second mission are shown on'Fig. 2-10. The old bounds for the 

stationary source are shown in light dotted lines for comparison. Note that the ultimate 

hyperbolic and spherical performance bounds are nearly identical to those achieved in 

the previous example by a vehicle simply waiting at the destination point. However, 

the time estimating system ends up with better performance because of the trip it 

took. The time synchronizing system was able to get improved time information near 

the middle of its path. Although the benefit of the accurate positions was lost due to 

higher drift rates in position sensors, the benefit of the accurate time synchronization 

remained. 

2.3    Optimal Navigation 

The vehicle has the ability to move, and, in general, some flexibility in the path it 

selects from its origin to its destination. In this section, a set of feasible vehicle paths 

is parameterized, and the path is selected from this set which results in the least 

position estimate error at the end of the journey. The selection of such a path is 

known as the optimal navigation problem. 

41 



2000 

1500 

1000 

500 

c g 
"55 
o 
0- 

I > 
-500 

-1000 - 

-1500 

-2000 
■2000   -1500   -1000    -500 0 500      1000     1500     2000 

X-Position (m) 

Figure 2-9: Vehicle path. 

2.3.1    Path Parameterization 

The set of feasible vehicle paths must be parameterized in some way so that the set can 

be searched to find the optimal path. Path parameterization begins with identifying the 

features of the path which are significant to the solution of the problem. Information is 

only obtained along the path when the vehicle receives the beacon transmissions, and 

thus the only significant points on the vehicle path are the points at which reception 

occurs. The path is therefore represented as a set of connected reception points. It 

is assumed that the source is transmitting at evenly spaced time intervals, so the 

maximum vehicle speed imposes a constraint on the maximum separation between 

consecutive reception points. A mission time duration specifies the total number of 

reception points in the path, and the starting point and final destination point are 
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fixed. The path constraints are listed below: 

• The time between vehicle transmissions is a constant At. 

• The path will have a fixed number of reception points K, which is equivalent to 

constraining the total mission time to be (K — l)At 

• The first transmission point will be at a fixed origin, and the last transmission 

point will be at a fixed destination. 

• The vehicle has a maximum speed v, so the maximum separation between trans- 

mission points is vAt. 

Thus the feasible path consists of a set of K transmission points with the first 

and last of these points fixed and the maximum distance between consecutive points 

constrained. 

2.3.2    Optimization Algorithm 

A simulated annealing algorithm was used to find the optimal path [28, 34]. An initial 

feasible path is chosen as the working path, and the objective is evaluated for this 

path. In this case, the initial working path is taken to be the straight path between 

the origin and the destination, and the objective is the final position error at the 

destination point. 

Next, one of the points in the working path is then perturbed to form a new path. 

The point of the perturbation is chosen randomly, with all points being equally likely 

(excluding the start point and end point, which are fixed).  The new location of the 

44 



x(n-l) 

Figure 2-11: Feasible perturbation region. 

perturbed point is constrained. It must be no further than vAt from the previous and 

following points in the path. It is also desirable to decrease the perturbation size as 

the annealing process continues. To accomplish this, the perturbed point is further 

constrained on the /cth iteration to lie no further than a distance p(k) from its original 

location, where p(k) = p0a
k for some a. 

The combination of these constraints means that the perturbed point lies in the 

intersection of three circles: one circle centered at the previous point and having 

radius vAt, one circle at the following point and having the same radius, and one circle 

centered at the current point location and having radius p{k). These constraints are 

shown in Fig. 2-11. 

The desired probability distribution for selecting the perturbed point is one uni- 
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formly distributed over the feasible region and zero elsewhere.   This is difficult to 

create numerically, so instead, a rectangular region is found which contains the feas- 

ible region, and points are guessed with a uniform distribution over this rectangular 

region until one is found which lies in the feasible region. The rectangular bounding 

region is found by taking an axis connecting the points preceeding and following the 

current point.  Let d be the length of this axis. The zero of this axis is taken to be 

the preceding point with positive numbers in the direction of the following point. The 

coordinate of all feasible points along this axis must lie in the interval, [d - vAt, vAt}. 

A second axis is defined perpendicular to the first, and having its zero at its inter- 

section with the first axis.   The coordinate of all feasible points along this second 

axis must lie in the interval, [-%Jr2
max - d2, ^r2

max - d2\. The maximum perturbation 

constraint consists of a circle of radius p(k) around the current point. This circle is 

approximated by the square with sides 2p(k) which contains it. The intersection of the 

rectangle from the maximum separation constraint and the square from the maximum 

perturbation constraint defines a rectangular region which bounds the feasible region. 

This combined constraint is the shaded region in Fig.   2-12.   Perturbed points are 

guessed with uniform distribution in this rectangular region until one is found which 

lies in the feasible region. 

Once the perturbed path is created, its objective function is evaluated. If the 

perturbed path achieves a lower (better) objective function value, then the perturbed 

path becomes the new working path. If the perturbed path achieves a higher (worse) 

objective function value, then it is only chosen as the new working path with a prob- 

ability of 
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Figure 2-12: Feasible region with bounding rectangle. 

exp(- 
$ old 

T(k) 
(2.27) 

where ^new and §0u are the new and old values of the objective function, and T(k) 

is a temperature term at the kth iteration, T(k) = T0a
k, where a will be the same 

value as was used in the definition of the maximum perturbation p(k). Note that the 

probability of accepting the path with the higher (worse) objective depends on two 

factors. First, it depends on how much worse the perturbed path is. It is more likely 

to choose a path which is a little bit worse than one which is much worse. Second, it 

depends on the iteration number k. As the algorithm proceeds, it becomes less likely 

to accept a worse path. This technique of selecting at times worse paths is intended 

to allow the minimization algorithm to escape from local minima [34]. 
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The algorithm terminates after a fixed number of iterations, and is repeated 5 

times to insure that the same optimal path is achieved each time. If the solutions from 

each run are not the same, then the number of iterations for each run is increased 

until a consistant answer is obtained. 

2.3.3    Examples of Optimal Navigation 

The simulated annealing algorithm is now applied to find optimal navigation paths, 

for the conditions below. 

• Maximum vehicle speed: 2 m/s 

• Time Between Transmissions: 50 s 

• Number of Transmissions K: 31 

• Initial position variance (m2): 1002 (in each axis) 

• Initial time sync, variance (s2): l2 

• Travel time measurement variance (s2): 0.0012 

• Increase in position variance between transmissions (m2): 202 (in each axis) 

• Increase in time sync, variance between transmissions (s2): (10~4)2 

• Number of Iterations N: 10000 

• Initial search radius p0: 500m 

• Initial temperature TQ: 1 



• Decay Coefficient a: 0.01<1/JV) 

There are two kinds of variables in the vehicle state vector for the optimal nav- 

igation case, position and time synchronization. The position estimate error grows 

rather quickly with time, so that previous position estimates contain far less inform- 

ation about present position than does the present measurement. Time synchroniza- 

tions, however, drift slowly, so that an accurate time synchronization obtained at some 

past time continues to be useful well into the future. The usefulness of accurate time 

synchronization can be seen by comparing the hyperbolic and spherical Cramer-Rao 

bounds described earlier. 

The resulting optimal path is shown in Fig. 2-13 superimposed on the bounds for 

time synchronization. The vehicle diverts toward the center of the array to acquire 

better time synchronization. This time synchronization results in much improved 

resolution in the region near the baseline extension, where hyperbolic positioning 

would be quite poor. 

If the path length is extended to 51 transmissions, the diversion toward the center 

of the array becomes more clear, as seen in Fig. 2-14. The vehicle in fact moves at 

its full speed to the center of the array, then sits there, and then moves at full speed 

to the destination point. 

Finally, in Fig. 2-15 the start point of the path is changed. Again, the vehicle 

travels to the center of the array and sits there before proceeding to its destination. 
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Figure 2-13: Optimal navigation, 31 transmissions. 
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Figure 2-14: Optimal navigation, 51 transmissions. 
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Figure 2-15: Optimal navigation, 51 transmissions, different starting point. 

2.4    Conclusion 

Spherical and hyperbolic positioning systems represent end points of a continuum of 

possible systems. This continuum is parameterized by the variance of the transmit 

time synchronization error. By estimating the time synchronization in a hyperbolic 

navigation system which transmits at regular intervals, it is possible to improve the 

position resolution, possibly up to the resolution which a spherical system would 

provide. To achieve substantially improved resolution, however, the drift rate of the 

clocks multiplied by the sound speed must be small compared to the position drift 

of the inertial position sensors. In acoustic systems, clock drift multiplied by sound 

speed is generally much smaller than the drift in position sensors, so time synchronizing 

position estimation works well. Another consequence of the slow drift of sensors is that 
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the position estimate at a destination point depends not only on local measurement 

geometry, but also on the path followed in reaching the destination. The problem of 

optimal navigation is to find the vehicle path which provides the least error in the final 

position estimate at the destination. This problem was solved for several examples, 

and it was found that the optimal path was one which diverted toward the center of 

the positioning array where the most accurate time synchronization estimates could 

be obtained. 
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Chapter 3 

Sound Speed Estimation 

Ocean acoustic tomography seeks to estimate variations in the sound speed profile 

within a volume by measuring travel time changes in rays traversing the volume. The 

analysis of this estimation problem begins with quantifying the travel time effect of an 

arbitrary sound speed perturbation on an eigenray in section 3.1. Toward this end, 

ray sampling functions are derived such that the projection of a sound speed variation 

onto the ray sampling function is the travel time change produced in the ray by the 

sound speed variation. By discretizing the sound speed variation and the ray sampling 

function, the forward problem of determining travel time variation from sound speed 

variation can be written as a linear matrix equation. 

The inverse problem of determining sound speed variation from travel time per- 

turbations is considered in section 3.2. The first observation which is made about the 

inverse problem is that it is very under determined. There are far more dimensions 

of possible sound speed profile variation than there are eigenrays through a typical 

environment. For this reason, the sound speed profile variation is approximated by a 
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weighted sum of basis function, and the profile estimate is formed simply by estimating 

the weights for each basis function. 

The fact that tomography works with a reduced order model has implications 

for the design of the optimal weight estimator-implications which have been largely 

overlooked in the acoustics literature. The commonly-used weight estimators are 

suboptimal because they do not account for sound speed profile variations orthogonal 

to the basis set, some of which may have a travel time effect disproportionate to their 

size because of the sensitivity characteristics of the tomography measurement. In 

section 3.3, the optimal weight estimator is derived. 

The basis functions used to represent sound speed profile variability are usually 

chosen using the method of empirical orthogonal functions. However, the empirical 

orthogonal functions are a suboptimal basis because they are chosen without taking 

into account how accurately their weights can be measured by the tomography ex- 

periment. In section 3.4, an optimal orthogonal function expansion for sound speed 

profile variability is derived. 

In section 3.5, the sound speed profile estimate accuracy using the optimal estim- 

ator and the optimal orthogonal function basis is compared with the estimate accuracy 

using conventional methods. The difference in performance is demonstrated for typical 

temperate and arctic environments. 

The optimal estimator and optimal basis functions were derived under the assump- 

tion that the profile covariance matrix was known. In practice, the profile covariance 

matrix must be estimated from a limited set of historical profile measurements. In 

section 3.6, the effect of using estimated covariance matrices is considered. 
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Finally, in section 3.7, the advantage in coverage obtained by mounting tomo- 

graphy sources on moving platforms is demonstrated, and the question of how to 

optimally utilize moving sources to focus tomographic accuracy at features of interest 

is analyzed. 

3.1    The Forward Problem 

In ocean acoustic tomography, the variation x in a mean sound speed profile within 

a volume is estimated using a measurement y of the resulting variation in ray travel 

times through that volume. A consequence of Fermat's principle is that the size of the 

travel time variations can be linearly related to the size of the sound speed variations, 

assuming that the measured ray arrivals in the received acoustic signal can be correctly 

matched with predicted eigenray paths. Although the sound speed profile change is a 

continuous function, it is sufficient to treat it as a large vector of sound speed samples 

taken at closely spaced depths. This allows the linear relationship between x and y 

to be written as, 

y = Cx + n. (3.1) 

Unfortunately, there is noise n associated with making the measurement y. In the 

tomography problem, the noise vector n includes both true measurement noise as 

well as any non-conformance of the true travel time perturbations to the linear model. 

The ray sampling function is defined such that the projection of a sound speed 

profile perturbation onto the ray sampling function is the travel time change which 

that profile perturbation causes in the ray. In terms of (3.1), the ray sampling functions 
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are the rows of the measurement matrix C, and they can be calculated as follows. The 

travel time ti along the ith ray which follows path Si through an environment with 

sound speed profile c(z) is [26], 

ti = I -j-rds (3.2) 
JSi c{z) 

Add a small sound speed perturbation x(z) to the sound speed profile, and write a 

Taylor expansion for the perturbed profile, retaining only the first two terms, 

1 X{z) (3.3) 
c(z) + x(z)      c(z)      c2(z) 

Now consider the effect of this profile perturbation on ray travel time. According to 

Fermat's principle, the time integral will be independent of a small perturbation in the 

integral path, so the time may be calculated as if the path had been unchanged by the 

sound speed perturbation. The perturbation in travel time for the zth ray will be y,. 

U + Yi = /  -j-^ds - 
JSi c[z) JSi z(z)~       Jsi c2(z) 

The relation between the variations is then, 

ds (3.4) 

' = -/s# (M) 
H C2(Z) 

Changing this path integral to an integral over depth between the starting depth 

Zbottom and the ending depth ztop of a ray segment, and adding a term ki(z) which is 
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the number of times the zth ray passes the depth z, 

_ _  /■*«*> x(z)kj(z) ,   6) 

yi_     Lbottom c>{z)\sin{6{z))\ 

where 6 is the angle with respect to horizontal of the ray. Using Snell's law, and 

defining ct as the sound speed for which the ray would become horizontal, i.e. the 

sound speed at a refractive turning point of the ray, 

yi = -fOP X{Z]HZ)     dz (3.7) 
lzbottom c^z)l\ _ £^i 

For purposes of this thesis, this integral equation must be written in a finite difference 

form so that the continuous integral above can be represented by the discrete equation, 

y = Cx (3.8) 

The integral could be put into finite difference form by letting the ith row of C which 

corresponds to the ith eigenray be, 

Cin = 
Hn^z) Az (3.9) 

c2(nAz)^/l - ^i 

However, this function has a singularity at the turning depth of the ray, so the discrete 

approximation becomes poor near the turning depth. Since the singularity is integ- 

rable, and the ultimate goal is to approximate the integral in (3.7), a better solution 
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is to let Cin be the integral in (3.7) over a depth interval (n - l)Az to nAz, 

Cir 

rnAz Hz) 
(n-l)Az    2 wfi^W 

dz. (3.10) 

For sufficiently fine sampling of the profile (small Az), we may assume that the sound 

speed profile changes linearly between our sample points, so that c(z) = c((n-l)Az) + 

ß(z - (n - l)Az), where ß = (c(nAz) - c((n - l)Az))/(Az). The next step will be 

changing the variable of integration from z to c. The variable k(z) has thus far 

prevented the integrand from having a non-zero value outside of the depth range of 

the ray. When k(z) becomes discretized to k(nAz), care will have to be taken with 

the limits of integration so that the integral does not extend outside the depth range 

of the ray. 

v^in  — 

Using the integral [23], 

ki(nAz)     rmin(ct,c(nAz)) \ 

ß 

rmm{ct,c{n£\z 

J7nin(ci,c((n—l )^2)) A. I\ 
-de. 

J 
dx 

V^ >.2„A,2 I' 

^J^^^ 
a*x 

(3.n; 

(3.12) 

the expression for Cin becomes 

(-"in  — 
k{(nAz) 1 - 

ß 

mm(ct,c(nAz)) 

min(ct,c((n—I) Az)) 

(3.13) 
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Figure 3-1: Profiles for the three ray sampling functions. 

3.1.1    Ray Sampling Functions 

Ray sampling functions are shown in Figs. 3-2. 3-3, and 3-4 for rays in environments 

with the three sound speed profiles shown in Fig. 3-1. 

The first example deals with Profile 1 in Fig. 3-1. In this case the sound speed is 

constant everywhere in the environment. The ray which will be analyzed is the one 

shown in the right section of Fig. 3-2. This ray leaves a source at 1000m depth and 

is received 100km away at 3000m depth. The ray does not pass through water below 

3000m, and so the ray sampling function is equal to zero below this depth. The ray 

passes twice through water above 1000m depth, once on the way up and once on the 

way down, so the ray sampling function above 1000m is twice as large as it is between 

1000m and 3000m. 
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Figure 3-2: A sampling function and ray for profile 1-constant sound speed. 

The second example deals with Profile 2 in Fig. 3-1. In this case the sound speed 

is a linearly increasing function of depth, a simple Arctic profile. The ray which will 

be analyzed is the one shown in the right section of Fig. 3-3. This ray leaves a source 

at 1000m depth, is turned by refraction, and is received 30km away at 1000m depth. 

Rays are most sensitive to sound speed variations at their turning depth, and this 

is reflected by the sampling function for this ray which becomes large at the turning 

depth of the ray. The sampling function is actually unbounded but integrable at 

the turning depth, however this discontinuity is removed while maintaining the same 

integrated travel time effect using the discretization proposed in (3.10). Note that the 

ray sampling function is again equal to zero for depths which the ray does not pass 

through. 
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Figure 3-3: A sampling function and ray for profile 2-the Arctic profile. 

The third example deals with Profile 3 in Fig. 3-1. In this case the sound speed 

has a minimum at 1000m depth, a simple temperate profile. The ray which will be 

analyzed is the one shown in the right section of Fig. 3-4. This ray leaves a source at 

1000m depth, is turned by refraction several times both above and below the source 

depth, and is received 100km away at 1000m depth. Rays are most sensitive to sound 

speed variations at their turning depth, and this is reflected by the sampling function 

for this ray which becomes large at both the upper and lower turning depths of the 

ray. Note that the ray sampling function is 50% larger for depths just above 1000m 

than for depths just below 1000m. This is because the ray passes six times through 

depths above 1000m and only four times through depths below 1000m. 

It should be noted that point measurements of sound speed can also be represented 
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Figure 3-4: A sampling function and ray for profile 3-the temperate profile. 

as sampling functions. The sampling function of a point measurement is simply a delta 

function at the depth of the measurement. 

3.2    The Inverse Problem 

The goal of tomography is to produce sound speed profile estimates within a volume 

based on a limited number of travel time measurements along eigenrays passing 

through the volume. As such, the tomography problem is grossly underdetermined 

[36]. However, most sound speed profile variability can be represented by a relatively 

small number of modes of variation about the local mean profile [32]. If the sound 

speed profile variation is approximated as a weighted sum of a small number of basis 

functions corresponding to the dominant modes of variation, then a reasonable profile 
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estimate can be obtained simply by estimating the weights for the basis functions. 

The variation x in a mean sound speed profile within a volume is estimated using 

a measurement y of the resulting variation in ray travel times through that volume. 

In the linear model of (3.1), 

y = Cx + n, (3.14) 

it will be assumed that the sound speed perturbation vector x and the noise vector n 

are zero-mean Gaussian with covariance matrices P = E |xxTJ and R = E |nn    . 

The vector x has far more elements than the measurement y which contains only as 

many elements as there are eigenrays through the environment. As a linear equation 

the tomography problem is very underdetermined, and, were it not for knowledge 

of the covariance matrix P, little could be said about x from the measurement y. 

Knowledge about the sound speed profile covariance P is usually incorporated into 

the tomography problem by approximating x as a weighted sum of a small number 

of orthonormal basis vectors corresponding to the most important modes of variation 

in x. If these basis vectors compose the columns of $ and the appropriate weight for 

each basis vector is contained in a, then the approximation is made, 

x ~ <&a (3.15) 

where a = 3>Tx. The weight vector a is much smaller in size than the original unknown 

vector x, and the inverse problem can be solved. 

One step in designing a tomography experiment is to pick a set of basis functions 
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$ and specify a method for determining an estimate ä of the weights for those basis 

functions based on the measurement y. For purposes of this thesis, the optimal choice 

of ä and $ will be defined as the one which minimizes the expected mean squared 

error e in the resulting profile estimate, 

e = E (x - $a)T(x - *a)l . (3.16) 

This scalar error can be equivalently written as the trace of the covariance matrix, 

e = tr E [(x - *a)(x - *a)T] . (3.17) 

Section 3.3 derives and analyzes the optimal weight estimator, and section 3.4 de- 

rives and analyzes the optimal set of basis functions for representing profile variability. 

3.3    Weight Estimators 

For now, let us set aside the question of how to select the basis vectors which compose 

$ and examine the choice of ä. While novel if less direct techniques have been applied 

to ray-based inversions, such as neural networks [40] and simulated annealing [7], the 

most common estimators for sound speed profile weights are ones which express the 

weight estimate as a matrix function of the travel time variations [36]. 

Because the system is linear and the variables are Gaussian, the optimal estimator 

ä in the mean squared error sense will also be the linear least squares estimator [15], 
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so with no loss of generality, it may be assumed that 

a = Ky. (3.18) 

The problem of choosing the optimal estimator is reduced to one of selecting a gain 

matrix K. 

3.3.1    Suboptimal estimators 

After selecting a basis set, it is common practice to rewrite (3.1) and (3.16) using the 

reduced order model for x in (3.15). (3.1) then becomes 

yr = Cre + n (3.19) 

where Cr = C<&.    Using (3.15) and the fact $ was defined to have orthonormal 

columns so that <&T<I> = I, (3.16) becomes 

e = E[(a-a)T(a-ä)], (3.20) 

or equivalently, 

e = trE[(a-a)(a-ä)T]. (3.21) 
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Basing the weight estimate on the reduced order measurement model of (3.19), ä = 

Kyr, the error objective e in (3.21) can be rewritten, 

e = tr [Pr - KCrPr - PrCjKT + K(CrPrCj + R)KT] , (3.22) 

where Pr = E [aaT| = <&TP$. The optimal gain matrix K is found by setting the 

derivative of this error objective with respect to the matrix K to zero. The following 

symbolic matrix derivatives are helpful in this calculation [18, 42, 19, 44]. 

-£-tr [AB] = BT (3.23) 
aA 

^-tr [BTAT] = BT (3.24) 
aA      L J 

—tr fABAT1 = AB + ABT (3.25) 
aA      L J 

Taking the derivative of (3.22) with respect to K and setting it to zero yields, 

2PrC^ - 2K(CrPrCj + R) = 0. (3.26) 

Solving for K produces the gain matrix for the reduced order estimator, 

K = PrCj (crPrCj + R)_1. (3.27) 
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Since Cr = C* and Pr = *TP*, this equation can also be written in expanded 

form, 

K = *TP**TCT (C*$TP$$TCT + R)"
1
 . (3.28) 

3.3.2    Optimal Estimator 

If the full measurement equation is retained instead of making the reduced order 

approximation, a different answer is found [12]. The estimate ä will be chosen to 

minimize the original error objective in (3.17), 

e = tr E [(x - $a)(x - $a)T] , (3.29) 

and the weight estimator will be based on the full order measurement model of (3.1), 

so ä = Ky. In this case, the error objective which K must minimize is 

e = tr  [P - #KCP - PCTKT*T + $K(CPCT + R)KT$T] . (3.30) 

The order of multiplications within a trace can be rearranged without changing the 

value of the trace, that is, for A an n x m matrix and B and m xn matrix, tr AB = 

tr BA. Rearranging (3.30), and recalling that the columns of $ are orthonormal so 

that *T$ = I, (3.30) becomes, 

e = tr [p - KCP$ - $TPCTKT + K(CPCT + R)KT]. (3.31) 
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Taking the derivative of this trace with respect to the matrix K with the help of the 

identities in (3.23), (3.24), and (3.25), and setting the derivative to zero yields 

2$TPCT _ 2K(CPC1 + R) = 0. (3.32) 

Solving for the optimal gain matrix K produces, 

K = *TPCT (CPCT + R) 
-i 

(3.33) 

Note that this is the Kaiman gain for the full order system projected onto the basis *, 

so the estimate of the weights is the same as if the estimate of the full vector x were 

formed and then projected onto the selected basis. 

Simple Comparison A simple example illustrates the advantage of the optimal 

estimator in (3.33) over the reduced order estimator in (3.27). Assume that the noise 

covariance matrix R = I, and 

1   9 
9   0 

0   1 

(3.34) 

The dominant mode of variation in x is in the direction i o , since this is the 

eigenvector corresponding to the larger eigenvalue of P. However the matrix C makes 

the measurement vector y most sensitive to variations in x along the direction of the 

eigenvector corresponding to the smaller eigenvalue of P, 0    1 
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The basis vector $ will be chosen to represent the dominant mode of variation in 

$ 1   0 (3.35) 

The two-element vector x will be approximated by a single weight applied to this basis 

function. The mean squared error for the resulting estimate of x is given in the table 

below when the weight is estimated using the suboptimal estimator and the optimal 

estimator. 

Suboptimal 

67.5 (actual) 

0.9 (predicted) 

Optimal 

9.1 

There are two error terms listed under the suboptimal estimator. The error labeled 

"actual" is in fact the mean squared error achieved by the suboptimal estimator. 

Before the estimators are applied, the mean squared error associated with x is tr P = 

10. The error after the application of the suboptimal estimator is 67.5, far worse than 

before. The job of an estimator-any estimator-is to account for all of the measurement 

vector. It does this by attributing some of the measurement to a weight change and the 

rest to noise. In the reduced order model used by the suboptimal estimator, neither the 

weight change nor the noise model accommodate well the large measurement changes 

produced by the unmodeled direction of variation in x. Yet all measurement change 
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must be accounted for, so the estimator is forced to introduce large weight shifts to 

explain the measurement change within the context of the reduced order model. 

Not only does the suboptimal estimator perform poorly, but within the context of 

the reduced order model, there is no indication of the performance problem. The error 

which would be predicted if the reduced order model were accurate is a very satisfying 

0.9. The reduced order model takes no account of the unmodeled direction of variation 

in x which, though smaller than the modeled variation, has the greater effect on the 

measurement y. The reduced order model not only results in an estimator with poor 

performance but also produces a false prediction of estimate accuracy. 

The optimal estimator produces a realistic evaluation of its own performance, be- 

cause it is based on a full order error model. The initial uncertainty in x was 10. 

Using the measurement, the optimal estimator is only able to reduce this to 9.1. This 

is a result of the fundamental ambiguity in the measurement, which the suboptimal 

estimator does not account for, since it uses a reduced order model where the ambigu- 

ity is not reflected. The optimal estimator makes the best use possible of the limited 

information afforded by the measurement. 

In this example, a simple system was created specifically to reveal the weakness of 

the suboptimal estimator. The simulations in Section 3.5 will demonstrate that these 

problems are not only a property of carefully crafted examples, but in fact are present 

in realistic tomography experiments. 

70 



3.4    Basis Functions 

Having determined the optimal estimator ä for the weights of arbitrary basis vectors 

$, the question of choosing the optimal basis vectors is now addressed. The earliest 

tomography experiments used constant velocity layers to parameterize sound speed 

[37]. Presently, the method of Empirical Orthogonal Functions (EOF) is commonly 

used in tomography to select a set of basis vectors to represent variations in the sound 

speed profile. This method of EOFs is known in other fields as principal component 

analysis or the Karhunen-Loeve expansion, and is well described in [27]. It seems to 

have been first developed by [29]. Early oceanographic applications were representing 

currents [30] and temperature fields [9], and since that time it has been widely used 

to represent sound velocity data. In the method of EOFs, historical profiles are used 

to estimate a profile covariance matrix, and the eigenvectors corresponding to the 

largest eigenvalues of the covariance matrix are taken for the basis vectors. First, the 

method of empirical orthogonal functions is reviewed. Then, a method for generating 

the optimal set of basis functions is derived. Finally, the functions generated by 

the two methods are tested in the simple example of the previous section, and their 

performance compared. 

3.4.1     Empirical Orthogonal Functions 

In selecting the optimal basis function, the same error objective from (3.17) will be 

used, except that now the free variable is the basis set 3? instead of the estimator gain 

matrix K. Empirical orthogonal functions (EOFs) are the set of basis functions which 
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minimize the error objective under the assumption that the weights are determined 

exactly, that is, ä = a = 4>Tx. The error objective is, 

e = tr E [(x - *a)(x - $a)T] . (3.36) 

If it is assumed that the coefficient weights are determined correctly, then the objective 

function becomes, 

e = tr  [P-$$TP-P$$T + #$TP$$T]. (3.37) 

Using the fact that within a trace the order of multiplication can be rearranged and 

the fact that 3>T$ = I, the error is rewritten, 

e = tr  [P-*TP*]. (3.38) 

This function is clearly minimized if the basis vectors which form the columns of $ 

are the eigenvectors corresponding to the largest eigenvalues of the covariance matrix 

P. These columns of $ are the EOFs. The first use of EOFs to represent sound speed 

profile variability seems to have been for the purpose of compressing large archives of 

historic profiles [32]. In this application, the EOFs are optimal, because the weights 

can be calculated directly as a = <frTx. 
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3.4.2    Optimal Orthogonal Functions 

Acoustic tomography differs from the data compression application of EOFs in that the 

weights are estimated from travel time variations rather than being calculated exactly. 

The travel time variations are not equally sensitive to all modes of profile variation, 

and as a result, all weights cannot be estimated with the same accuracy. The process 

of creating EOFs does not take into account tnese measurement resolution issues. 

This section presents a method for calculating optimal orthogonal functions (OOFs) 

which are the basis that provides the smallest mean squared error in the final profile 

estimate by taking into account not only the sizes of the different profile variations 

but also the ability of the tomographic experiment to measure the variations [12]. 

The error objective which will be minimized is, as before, (3.17), 

e = tr E [(x - $a)(x - $a)T] . (3.39) 

In acoustic tomography, the weights must be estimated from the data, so ä = Ky. 

Using (3.1), this error objective can then be rewritten, 

e = tr  [P - $KCP - PCTKT$T + *K(CPCT + R)KT$T] . (3.40) 

Using the optimal K from (3.33), and rearranging the multiplication order within the 

trace, the error objective becomes, 

e = tr p - $T
PC

T
 (CPC

T
 + R) 

X
CP$ (3-41) 
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By comparison with (3.38) it is clear that the function is minimized when the columns 

of <fr are the eigenvectors corresponding to the largest eigenvalues of the matrix 

PCT (CPCT + R)~ CP. These eigenvectors which comprise the columns of $ are 

the OOFs. They minimize an error function which contains information about both 

the size of the profile variations, P, and the sensitivity of the tomography measurement 

to these variations, C. 

Simple Comparison    The two techniques for creating basis sets are applied to the 

simple example problem where R = I, and 

1   9 

9   0 

0   1 

(3.42) 

The resulting EOF and the resulting OOF are given in the table below, along with the 

mean squared errors for both when used in conjunction with the optimal estimator. 

Using EOFs 

$ 

e = 9.1 

Using OOFs 

1 
# = 

0.71 

0 0.71 

e = 8.2 

The EOF is simply chosen to be the largest mode of variation in x.   The OOF 

includes a component of the larger mode as well as a component of the smaller mode in 
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x. Because of the choice of C, the smaller mode has a greater effect on the measurement 

than the larger mode, and the balance between mode size and measurement sensitivity 

in this example is such that the OOF happens to contain equal components of each 

mode. 

The OOF improves the estimate by spanning the subspace where the greatest re- 

duction in error is possible using the tomographic measurement rather than simply 

spanning the subspace where the greatest a priori uncertainty exists. Any two or- 

thonormal bases which span the same subspace will produce the same estimate error. 

A consequence of this is that the improvement in mean squared error from using the 

OOF instead of the EOF will never be greater than the amount of variance in x un- 

modeled by the EOF. In this simple example, 10% of the variance in x is not modeled 

by the EOF, and the reduction in mean squared error is about 9% of the total variance 

in x. 

3.5    Examples 

Two examples are given to demonstrate the effect of the estimator and basis choice on 

inversion accuracy in environments with canonical temperate and arctic sound speed 

profiles. 

3.5.1    Temperate Example 

In the first example, a 4000m deep temperate ocean with a Munk sound speed profile 

[38] is considered. The source and receiver are both at 1000m depth and are separated 
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by 100km. The sound speed profile and the eigenrays connecting source and receiver 

are shown in Fig. (3-5). Added to this mean profile are two possible sound speed 

profile perturbations which are shown in the right half of Fig. (3-6). One corresponds 

to a surface warming and the other to axial warming adjusted so that the two variations 

are orthonormal. If a profile covariance matrix were formed for this ocean, these would 

be its only two eigenvectors with non-zero eigenvalues. In this example, the eigenvalue 

or variance of the weight for the surface warming eigenvector will be 400, and for the 

axial warming 100. The basis functions are orthonormal, so the total variance in the 

profile is 500 meters-squared per second-squared, with 80% of the variance of the 

profile in the direction of the surface warming variation, and only 20% in the direction 

of the axial warming. The noise covariance matrix is R = (0.01 )2I seconds-squared. 

On the left side of Fig. (3-6) are the ray sampling functions shown on the same 

axes for all four eigenrays. These sampling functions are the rows of the matrix C, 

so the inner product of each sampling function with a profile variation is the travel 

time change which that profile variation will cause in a particular eigenray [10]. These 

sampling functions are derived from the ray travel time equations and described in 

greater detail in the Appendix. It is important to note here that most of the area of the 

sampling functions is in the region where the axial warming is large and the surface 

warming variation is small. This means that the ray travel times will be more sensitive 

to the small axial warming variation than to the large surface warming change. This 

condition of being more sensitive to the small mode and less sensitive to the large 

mode is similar to that demonstrated in the simple example of the previous section. 

In this example, a single basis function will be chosen to approximate the two 
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Figure 3-5: Sound speed profile and eigenrays for the temperate example. 

independent modes of variation in the profile. When the method of EOFs is used to 

select this basis function, the mode with the larger eigenvalue, the surface warming 

mode, is chosen as shown on the left side of Fig. (3-7). The OOF method, however, 

selects a basis function which contains a component of both the larger mode and the 

more measurable mode. This OOF is shown on the right side of Fig. (3-7). 

The table below shows the error in the profile estimate when the suboptimal es- 

timator is used with the EOF and when the optimal estimator is used with both the 

EOF and then with the OOF. 
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Figure 3-6: Sampling functions and profile variations for the temperate example. 
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Figure 3-7: The EOF and OOF for the temperate example. 
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Total Variance of Sound Speed Profile Estimate {j^-j 

Suboptimal Estimator Optimal Estimator 

EOF EOF OOF 

447 (actual) 

383 369 

255 (predicted) 

As in the simple example, the suboptimal estimator predicts an error much smaller 

than its true error because it takes no account of the unmodeled mode of sound speed 

profile variation. The optimal estimator makes a significant improvement in estimate 

accuracy because it takes into account the effect of the unmodeled mode. Using 

the OOF with the optimal estimator makes a slight additional improvement. The 

EOF already represents 80% of the profile variation, so the maximum improvement 

possible with a different basis is 20% of the total variance. The OOF achieves a small 

improvement of about 3% of the initial total sound speed profile variance. 

3.5.2    Arctic Example 

In the second example, a 4000m deep Arctic ocean with a linear profile is considered. 

As before, the source and receiver are both at 1000m depth and are separated by 

100km. The sound speed profile and the eigenrays connecting source and receiver are 

shown in Fig.   (3-8).   The same two orthonormal sound speed profile perturbations 
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are considered as shown in the right half of Fig. (3-9). As before, the variance of the 

weight for the surface warming eigenvector will be 400 and for the deep warming 100, 

so that the total profile variance is 500 meters-squared per second-squared, with 80% 

of the variance of the profile in the direction of the surface warming vector, and only 

20% in the direction of the deep warming. As before, the noise covariance matrix is 

R = (0.01)2I seconds-squared. On the left side of Fig. (3-9) are the ray sampling 

functions shown on the same axes for all the eigenrays. It is important to note here 

that most of the area of the sampling functions is in the region where the deep warming 

is large and the surface warming variation is small. This means that the ray travel 

times will be more sensitive to deep warming than surface warming. 

A single basis function will be chosen to approximate the two independent modes 

of variation in the profile. When the method of EOFs is used to select this basis 

function, the mode with the larger eigenvalue, the surface warming mode, is chosen 

as shown on the left side of Fig. (3-10). The optimal orthogonal function method, 

however, selects a basis function which contains a component of both the larger mode 

and more measurable mode. The OOF is shown on the right side of Fig. (3-10). 

The table below shows the error in the profile estimate when the suboptimal es- 

timator is used with the EOF and when the optimal estimator is used with the EOF 

and then with the OOF. 
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Figure 3-8: Sound speed profile and eigenrays for the Arctic example. 
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Figure 3-9: Sampling functions and profile variations for the Arctic example. 
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Figure 3-10: The EOF and OOF for the Arctic example. 

Total Variance of Sound Speed Profile Estimate \^r) 

Suboptimal Estimator Optimal Estimator 

EOF EOF OOF 

653 (actual) 

386 332 

132 (predicted) 

As in the simple example, the suboptimal estimator predicts an error much smaller 

than its true error because it takes no account of the unmodeled mode of sound speed 

profile variation. The optimal estimator makes a significant improvement in estimate 
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accuracy because it takes into account the effect of the unmodeled mode. Using the 

OOF with the optimal estimator makes a slight additional improvement. The EOF 

already represents 80% of the profile variation, so the maximum improvement possible 

with a different basis is 20% of the total variance. The OOF achieves an improvement 

of about 11% of the initial total sound speed profile variance. 

3.6    Using Estimated Profile Covariance Matrices 

Up to this point, it has been assumed that the profile covariance matrix P is known. 

In practice, this covariance matrix is estimated from a finite set of historical profile 

measurements combined with whatever physical constraints are appropriate to the 

environment. There are usually much fewer profile measurements than there are points 

in each measurement, so the estimate of P, P is far from being full rank. This means 

that the estimate P is in fact a reduced order model of the true covariance P, and 

as such renders the inversion subject to the some of the same frailties as intentional 

model order reduction. This section considers what can be done in practical terms 

to improve the profile estimate, recognizing that the profile covariance estimate is 

imperfect. 

3.6.1    The Covariance Matrix Estimate 

In most tomography experiments, a profile mean and covariance matrix are estim- 

ated from an ensemble of actual profile measurements, {£i,£2, • • •, £N}-  From these 
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measurements, a mean is estimated as, 

N 

iV   n=l 

and a covariance is estimated as, 

1       N 

n=l 

(3.44) 

In general there many fewer sample profiles than the dimension of P, so beyond a 

few dominant eigenvalues and their associated eigenvectors the estimate is poor. 

3.6.2    Weighting the Noise Covariance Diagonal 

The common method for dealing with this problem is to make the approximation, 

P = *D$T (3.45) 

where D has along its diagonal the largest eigenvalues of P from (3.44), and 4> has as 

its columns the associated eigenvectors. To deal with the fact that certain directions 

of variation in x have been ignored in this approximation, the diagonal of the noise 

covariance matrix R is increased to accommodate not only measurement noise, but 

also the measurement effect of unmodeled directions of variation in x. 

Reff = R + aI (3.46) 
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3.6.3 Wrapping Profile Covariance into Noise 

The problem with this blind increase of the diagonal of the measurement error cov- 

ariance is that it does not reflect the true directions of measurement variation caused 

by profile changes. A better method is to write x as the sum of its reduced order 

approximation and an approximation error term, x 

x = $a + x. (3.47) 

Using this new representation in (3.1), 

y = C$a + Cx + n. (3.48) 

Grouping the Cx + n together as "noise", and assuming that the unmodeled profile 

variations have covariance E xxT   = <rl, the new noise covariance matrix becomes, 

Rnew = R + aCCT. (3.49) 

3.6.4 Comparison of Methods 

In Fig. (3-11), the mean squared error resulting from both methods in the temperate 

profile case is shown as a function of the weight a. The dashed line shows the effect of 

the method in (3.46), and the solid line shows the effect of the method in (3.49). The 

significant feature is the depth of the minimum. The second method, which takes into 

account the direction of measurement variation caused by unmodeled profile changes, 
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produces a lower minimum. 

In Fig. (3-12), the mean squared error resulting from both methods in the Arctic 

profile case is shown as a function of the weight a. The dashed line shows the effect of 

the method in (3.46), and the solid line shows the effect of the method in (3.49). The 

significant feature is the depth of the minimum. The second method, which takes into 

account the direction of measurement variation caused by unmodeled profile changes, 

produces a minimum which is slightly lower, 394 versus 396. 

Note that the limit in both cases for large a is 500, the a priori error in the profile. 

When a is large, the noise has been made to dominate the measurement, and the 

measurement contains essentially no information. When the added noise is small, the 

performance approaches that of the suboptimal estimator. Note that a = 0 does NOT 

mean the measurement is taken to be noise free. Rather it means that there is no 

additional weight added to the existing noise covariance matrix R. 

3.7    Optimal Moving Source Tomography 

The more ray paths through the environment which are available, the more accurate 

the inversion will be. Using mobile acoustic sources, it is possible to obtain a greater 

diversity of ray paths and, in general, more information about the environment than 

with fixed sources. Fig. 3-13 shows a top view of a typical tomography problem. 

Four moorings, represented by black circles, have been put in place. Each mooring 

has a source and a receiver array. The goal of the experiment is to localize a front, 

represented by the wavy line, which is in within the mooring configuration.   The 
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Figure 3-11: Comparison of MSE achieved as a function of a, temperate case. 
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Figure 3-12: Comparison of MSE achieved as a function of a, Arctic case. 
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Figure 3-13: Rays with fixed source. 

acoustic paths available for this localization are the straight lines shown. In Fig. 3-14, 

and AUV carrying a source moves around the outside of the array while transmitting. 

The circles represent the transmission points. With the AUV, there are many more 

acoustic paths which interact with the front, and localization of the front will be much 

more accurate. The usefulness of moving horizontally to obtain better sampling has 

been recognized in the acoustics literature [8]. 

While the source is moving, the environment is changing, and in large scale tomo- 

graphic measurements, it may not be possible to move a source quickly enough to get 

an effectively contemporaneous image of the environment. Even if temporal-spatial 

aliasing is a problem for horizontally moving sources, it may still be possible to benefit 

from moving source technology by moving the source vertically. 
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Figure 3-14: Rays with moving source. 

Fig. 3-15 shows the ray paths through a slice of temperate ocean for a fixed source 

at 1000m depth and seven receivers throughout the water column at 100km range. 

If the number of receivers is increased, additional rays will fill in the spaces between 

the existing rays, however the shallow shadow zone between 15 and 35km range will 

still remain as will the deep shadow zone between 50 and 65km range. If the source 

moves, however, it is able to project sound into the shadow zones, and also provide a 

much larger number of rays to aid in the inversion, as shown in Fig. 3-16. 

This section takes moving source tomography one step further and asks the ques- 

tion of where a moving source should go to obtain the most information about the 

environment, or about a specific feature within the environment. 
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Figure 3-15: Rays with fixed source. 
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Figure 3-16: Rays with moving source. 
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3.7.1    Tomographie Resolution 

Moving the source provides more constraints on the inversion by providing a greater 

diversity of ray paths.   It also can be used to focus measurement resolution at a 

particular region in the environment. This principle is shown in the example below. 

Consider an environment of 200m deep water and 4km range. The mean sound speed 

profile and a single basis function representing all profile variability are shown in Fig. 

3-17. The 4km range from source to receiver is divided into ten 400m segments, with 

the weight for the basis function of equal variance and uncorrelated from segment 

to segment. The two pictures in Fig.  3-18 show the variance of the profile estimate 

throughout the environment for two different source locations. Lighter is larger errors. 

In every range section, the variance has the shape of the one basis function, largest at 

100m, and smallest at the surface and bottom, but the size of the weight error changes 

depending on how the rays sample that range. There are three eigenrays which sample 

the environment. In the top figure, in the first range division (0-400m), the rays are 

near the surface where the profile variation is small, and as a result, the errors are still 

fairly large.  In the second range division (400-800m), the rays are deeper, and pass 

through depths where the profile variation is larger, so the weight error is smaller. 

In the third range division (800-1200m), the rays pass through the depths where the 

profile variation is largest, and so the weight error is even smaller. As the rays head 

into deeper water for range segments four, five, and six (1200-2400m), they are further 

and further away from the large part of the profile variation, and so the weight errors 

begin increasing again.    Oddly, the error is quite small in range bin seven (2400- 
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Figure 3-17: Sound speed profile and basis function. 

2800m), even though two of the three rays are below the depth of significant profile 

variation. The reason for the excellent accuracy in segment seven is that in the earlier 

segments, the travel times of all three rays are influenced approximately the same 

amount by the variation, while in segment seven, two of the rays are unaffected by the 

profile variation, but one of them is very sensitive to the variation. Thus a variation in 

range segment seven produces a travel time shift in the rays which is nearly orthogonal 

to the variation caused by profile changes in all the other range segments. 

When the source is moved, the location of these regions of high accuracy changes, 

as shown in the bottom picture of Fig. 3-18. Here range segments six (2000-2400m) 

and eight (2800-3200m) have good resolution. This is again due to the characteristics 

of the ray sampling. Refer to the ray which reflects off the surface and bottom once the 
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Figure 3-18: Sound speed estimate variance. 
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SB-ray, and the ray which reflects of the surface twice and bottom once the SBS-ray. 

In range bin six, the SB-ray is very sensitive to the profile variation, while the SBS-ray 

is insensitive to it because of their depths. In range bin eight, the sensitivities are 

reversed. In the other bins the rays both have somewhat similar sensitivities to the 

profile variation. 

3.7.2    Optimal Tomography 

The accuracy of the tomographic measurement depends on how the various rays 

sample the region of interest in the environment, which depends on the source depth. 

In this example, a set of four transmission depths is found which give the maximum 

accuracy in a prescribed region of interest. In this example, a tomography problem 

is considered in a slice of 200m deep water at 4km range. The environment is di- 

vided horizontally into 8 range slices of 500m each. The sound speed profile variation 

within each range slice is represented by a sum of five basis functions, which allow 

representation of piecewise linear profiles. The mean sound speed profile and the basis 

functions are shown in Fig. 3-19. There is a single receiver in this environment at 

a depth of 50m. The source is able to move vertically, and the optimization problem 

we will consider is one of choosing the depths at which the source will transmit. The 

source is allowed to transmit four times, and the transmission depths will be chosen to 

minimize the integrated variance over the region enclosed by a box in the figures which 

follow. In the top picture of Fig. 3-20 the boxed region of interest is between 100 

and 150m depth and between 500 and 1500m range. The shading of the plot indicates 
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Figure 3-19: Sound speed profile and basis functions. 

the variance of the sound speed estimate as a function of position. The lower picture 

of Fig. 3-20 shows the estimate variance for each of the 40 weights in this example 

(5 weights for each range segment). The dotted line is the variance for a stationary 

source transmitting 4 times at 100m depth. The dashed line is the variance for a 

moving source transmitting at 40, 80, 120, and 160m. The solid line is the variance 

for a moving source transmitting at the optimal depths. The circles on the solid line 

indicate the four parameters which influence the variance of the sound speed estimate 

in the focusing region. In Fig. 3-21, the plots of Fig. 3-20 are repeated, except that 

the boxed region of interest is between 0 and 50m depth and between 1500 and 2500m 

range, and new optimal transmission depths for the new region of interest have been 

determined. 
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Figure 3-20: Sound speed estimate variance for stationary, moving, and optimal mov- 
ing source tomography (first region of interest). 
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Figure 3-21: Sound speed estimate variance for stationary, moving, and optimal mov- 
ing source tomography (second region of interest). 
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3.8    Conclusion 

The travel time measurement in ocean acoustic tomography is not equally sensitive to 

all modes of sound speed profile variability. To be optimal, a profile parameterization 

or inversion must take into account both the expected size of the profile variations 

and the resolution with which each variation can be measured. An optimal paramet- 

erization and inversion were derived which take both of these factors into considera- 

tion, and the accuracy enhancement which these techniques offer was demonstrated 

in tomography examples for typical temperate and arctic environments. In addition 

to optimizing the parameterization and the estimator, it is possible to optimize source 

locations for the best resolution in a region of interest. This optimization problem 

was also demonstrated here. 



Chapter 4 

Arrival Matching 

Before a tomographic inversion can be performed, the measured ray arrivals in the 

received signal must be matched with predicted arrivals to generate travel time pre- 

diction errors. If the predicted arrivals are identified with the wrong measured ar- 

rivals, errors will result in the inversion. This chapter examines the problem of arrival 

matching. A test environment is described in Section 4.1, and four different matching 

algorithms are described and evaluated in Sections 4.2, 4.3, 4.4, and 4.5. Finally, the 

advantages of the new correlated matching algorithm are analyzed in Section 4.6. 

4.1    Test Scenario 

If the predicted acoustic environment exactly matches the true acoustic environment, 

then the predicted arrivals will occur at the same times as the measured arrivals, and 

all of the methods described will identify the arrivals perfectly. What differentiates 

the methods is their ability to correctly identify arrivals when the true environment is 
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different from the predicted environment. To evaluate the methods presented in this 

chapter, a test scenario is created. The acoustic environment is described by a sound 

speed profile. The predicted sound speed profile is a constant 1500m/s, as shown on 

the left in Fig. 4-1. The true sound speed profile c(z) is the predicted profile co(z) 

with some amount of a profile variation 4>{z) added to it, 

c{z) = co{z) + a<t>{z) (4.1) 

The parameter a determines how much of the profile variation is included in the 

true profile. The profile variation used in this trial is shown on the right of Fig. 4-1. 

Values of a ranging from 1 to 20 were used to generate the family of 20 profiles shown 

on the left of Fig. 4-2. The eigenrays connecting the source at 70m depth with the 

receiver at 120m depth for the predicted profile are shown on the right of Fig. 4-2. 

Figure 4-3 shows the predicted arrival times for the predicted profile numbered 

from one to seven along the x-axis. The x's above the axis show the measured arrival 

times corresponding to values of a ranging from 1 to 20. Note that the travel times 

tend to change linearly with the parameter value. The matching algorithm will attempt 

to determine which of these linear arrival trends each measured arrivals is part of and 

match the measured arrival with the predicted arrival at the bottom of the linear 

trend. Note that while the graphs show the measured arrival times for all parameter 

values, the matching algorithm will only be given measured arrival times for a single 

parameter value at a time, and it will not know what that parameter value is. 

In the sections which follow, each matching algorithm will be applied to this test 
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Figure 4-1: Predicted profile and profile variation. 
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Figure 4-2: True profiles and eigenrays for predicted profile. 
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Figure 4-3: Predicted arrival times and measured arrival times for parameter values 
of 1 to 20. 

data set. Once a matching is selected, a Gauss-Markov estimate of the parameter 

value will be made, based on the linearized model of the relationship between travel 

time prediction error t and parameter a, 

t = Co + n. (4.2) 

The noise vector n is zero-mean Gaussian with covariance matrix R = CT^I, where 

crn = 0.001 seconds and a has variance a2
a equal in each case to the true value of a 

squared. 

For each value of a, the selected match will be shown by replacing the x's for 

the measured arrivals in Fig. 4-3 with the numbers of the predicted arrivals to which 
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each measured arrival was matched. A correct matching would then show all measured 

arrivals along each linear trend matched to the predicted arrival at the starting point of 

that trend. Once the matching for a parameter value is established and the resulting 

arrival time differences are calculated, the parameter value is estimated using the 

Gauss-Markov estimator, 

a = <r*CT(C^CT + alYH. (4.3) 

The parameter estimate error will then be shown as a function of parameter value 

for all matching methods. 

4.2    Simple Ordering 

The simplest matching algorithm matches arrivals according to their order of recep- 

tion. The earliest measured arrival is matched to the earliest predicted arrival. The 

next measured arrival is matched to the next predicted arrival, and so forth until all 

the arrivals of interest have been matched. 

The results of applying this matching algorithm to the test data set are shown in 

Fig. 4-4. When the parameter value is less than 4, the matching works well. When 

the parameter value reaches 4, one of the ray paths disappears, and as result, the 

paths are mismatched. Note that the appearance and disappearance of ray paths is a 

common phenomenon. A path also disappears at parameter value 9 and one appears 

at parameter value 14. The matchings shown in Fig. 4-4 are used as the basis for 

estimating the parameter value, and the resulting parameter estimate error is shown 
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Figure 4-4: Ordered matching. 

as a function of the true parameter value in Fig. 4-5. Note that the estimate errors are 

small for parameter values of 1,2, and 3, since all the paths were identified correctly 

in these cases. A large jump in the error occurs at parameter value 4, since this is the 

first value for which paths are incorrectly identified. Other discontinuities in the error 

occur at parameter value nine where a second ray path disappears and at 14 where a 

new path appears. 

The order matching method will produce the correct matching as long as arrivals 

do not appear, disappear, or change in order. Although arrivals may be consistent in 

long-range deep-ocean tomography, there is often significant fading in shallow water 

or in the shallow Arctic sound channel. A missing or appearing arrival will cause all 

subsequent arrivals to be incorrectly identified, so fading environments call for a more 

104 



Order Matcher 
20 -     i            i            i            i            i            i            i            i            i 

18 - 

16 - 

514 1                      ~\ 
0) 
15 12 
E 
to 
W10 

:         /     \_     ■ 

I   8 
c 

5   6 :    r^             : 
4 / 

2 

 -——. i    '    i         i         «         <         •         •         •         • 

8 10 12 
True Parameter Value 

14 16 18 20 

Figure 4-5: Error for ordered matching. 

robust arrival identification algorithm. 

4.3    Validation Windows 

A method which is more robust to fading than the simple ordering is one using val- 

idation windows. A time window is drawn around each predicted arrival, and if one 

and only one measured arrival falls within this window, it is matched to the predicted 

arrival. 

In this example, the window for each arrival is centered around the predicted 

arrival time, and the width of the window is the smaller of the distance to the previous 

arrival and the distance to the subsequent arrival. The application of this matching 

algorithm to the test data set is shown in Fig. 4-6. The validation windows used are 
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Figure 4-6: Validation window matcher 

shown as shaded regions on the graph. Note that when one and only one measured 

arrival falls within a window, it is matched to the predicted arrival within that window. 

The method fails when the shifts in arrival time are greater than the widths of the 

windows. At a parameter value as small as 1 this method has failed to identify the 

second arrival. At parameter value 3, it mistakes arrival 7 for arrival 6, and significant 

inversion errors result, as shown in Fig. 4-7. 

The validation window method is most useful when arrival fading occurs before 

the arrival time shifts become significant compared to the separation between arrivals. 

The validation window method is often used for deep-ocean tomography where the 

arrival time separations can be quite large, but the method is problematic in shallow 

water where the arrival time separations are smaller. 
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Figure 4-7: Estimate error using validation window matcher 

4.4    Independent Matching 

The linear model relating travel time variations to parameter variations provides in- 

formation about the behavior of arrivals which can be useful in solving the matching 

problem. This section describes a matching algorithm which uses the linear model 

to determine the travel time variance for each measured arrival and based on these 

variances finds the most likely match between measured and predicted arrivals. This 

algorithm also allows for the possibility that some arrivals may not have matches. 

The formulation of this algorithm allows the matching problem to be posed as an 

assignment problem and solved using standard linear programming techniques [10]. 

Let the predicted travel times be the elements of a vector tp, and the corresponding 

measured travel times be elements of a vector tm. The travel time prediction error t 
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is, 

t = tm - tp. (4.4) 

The travel time prediction errors can be related to parameter changes according 

to the linear model, 

t = Cx + n. (4.5) 

where the parameter vector x and the measurement noise vector n are independent 

and Gaussian with covariance matrices P and R respectively. The probability density 

for the iih element of the vector of matched measured arrivals is, 

P(tmi) = ^=^exP f-
(tmi~tpi)2) , (4-6) 

where af = (CPCT+R);,. The travel time measurements are correlated since they 

all depend on the same parameter vector x. However, for purposes of this algorithm, 

it will be assumed that they are independent so that the joint probability density for 

the whole vector of matched measured arrivals becomes, 

p(tm) = T[p(tmi) (4.7) 

The goal of the independent matcher is to form the vector tm by ordering a subset 

of the measured arrivals in such a way as to maximize the above likelihood function 

(4.7). It is possible that some of the predicted arrivals may not have suitable matches 
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in the set of measured arrivals. In this case, the probability for the missing element of 

tm is replaced by a constant penalty value in (4.7). This allows the matcher to leave 

some predicted arrivals unmatched, but assigns a penalty for doing so. 

Taking the natural logarithm of (4.7), removing some constant terms, and mul- 

tiplying by -1, the maximum likelihood problem can be rewritten as an equivalent 

minimization problem with objective function, 

WU) = E (tm'   2
tpi)2- (4-8) 

If an arrival is left unmatched, then the corresponding term in this sum is replaced 

by a constant a. 

This minimization problem can be posed as an assignment problem and solved with 

standard linear programming techniques. A cost matrix for the assignment problem 

is defined where the columns of the matrix correspond to the M measured arrivals 

and the rows correspond to the P predicted arrivals. The elements of the matrix are 

then. 

$,j = cost of matching the ith prediction to the jth measurement (4-9) 

** = (\2
tpi)2, (4-10) 

where Tj is the jth measured arrival (before a subset of these measurements are 

ordered in the vector tm). 
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The possibility that some arrivals may not have matches is handled by the assign- 

ment of "dummy" rows and columns [25]. The fixed penalty a is assessed for leaving 

an arrival unmatched. To incorporate this, M - 1 dummy rows are added to the P 

prediction rows so that as many as M - 1 of the M measured arrivals may remain 

unmatched if necessary, but at least one measured arrival will be matched to a pre- 

dicted arrival. The cost penalty for these unmatched measurements is set to the value 

a. Similarly, P - 1 dummy columns are added to the M measurement columns, so 

that as many as P - 1 of the P predicted arrivals may remain unmatched if necessary, 

but at least one predicted arrival will be matched to a measured arrival. The cost 

penalty for these unmatched predictions is also a. A small constant e is subtracted 

from the penalty for matching the jth dummy column with the j'th dummy row. This 

ensures that the algorithm will not waste time seeking a "best match" between the 

dummy rows and columns. The cost matrix constructed in this way is shown belo 

In this example P < M, 

iW. 
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In this thesis, Mack's method was used to solve this assignment problem [5]. 

The results of this independent matcher are shown in Fig. 4-8. The linear model 

informs the matcher about which arrivals will experience large time shifts as the para- 

meter value changes, like arrival 2, and which will experience small time shifts, like 

arrival 3. This information enables good matchings to be made until the parameter 

value reaches 6. This technique retains only the variances of the arrival times from 

the model, not the covariances between arrival times. As a result, for parameter value 

6, it sees nothing inconsistent with attributing an increases in travel time to arrivals 

2 and 4 and at the same time attributing decreases in travel time to arrivals 6 and 7. 

The estimate error plot in Fig. 4-9 shows the large jump in error at parameter value 
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Figure 4-8: Independent matching. 

6 where the first significant arrival identification errors are made. 

In summary, the independent matching algorithm uses information about which 

arrivals move significantly and which will tend to remain fixed with parameter value 

changes to offer some improvement in performance over conventional methods. 

4.5    Correlated matching algorithm 

The correlated matching algorithm proposed in this section takes into account correl- 

ations between the time shifts in the various arrivals, fully utilizing the information 

provided by the model in (4.5). 

Based on the statistics of the linear model (4.5) and using (4.4), a joint probability- 

density function can be written for the matched measured arrival vector tm. 
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Figure 4-9: Error for independent matching. 

p(tm) =    .     *   |      exp (-i(tm - tp^S-1^ - tp)) , (4.12) 

where £ = CPCT + R. The goal of the independent matcher is to form the vector 

tm by ordering a subset of the measured arrivals in such a way as to maximize the 

above likelihood function (4.12). 

It is possible that some of the predicted arrivals in tp may not have suitable matches 

in the set of measured arrivals. In this case, the empty spaces in tm are filled in with 

the expected value for these measured arrival times, given the information about the 

parameter vector contained in the arrival times which were matched. Specifically, let 

t' and t'm be the matched prediction and measurements respectively, and let tp be 

the unmatched predictions. If the prediction vector is, 
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t' 

tp 

and the measurement matrix is also partitioned as 

C = 
a 

C" 

then the completed matched measurement vector tm becomes. 

(4.13) 

(4.14) 

tm — 
tl 

(4.15) 

tp + C'PC1 (CPCf + R')  '(C-t'p) 

Where R' the measurement noise covariance matrix for t'm. 

In addition to filling in expected values for the missing arrivals, (4.12) is also 

multiplied by a constant penalty factor for each unmatched arrival. This provides 

a disincentive to leaving arrivals unmatched. Taking the natural logarithm of (4.12), 

and removing terms independent of tm, the problem of finding the maximum likelihood 

matching for tm becomes one of minimizing the objective function below, 

/ofci(tm) = (tm - t* )S-X(C - t^) + u(rm)a (4.16) 

where u(rm) is the number of arrivals left unmatched in tm, and a is the penalty 

for an unmatched arrival. 

The correlated matcher which minimizes (4.16) provides correct matches for much 

larger changes in parameter value by fully utilizing the information contained in the 
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Figure 4-10: Correlated matching. 

linear model about correlations in arrival time changes. It starts to fail at parameter 

value 15 where non-linearities in the travel time shift become significant compared to 

the time separation between arrivals. The first major failure occurs at parameter value 

18 when the non-linearities have become quite large. This major failure at parameter 

value 18 is reflected on the estimate error graph in Fig. 4-11, where the solid line 

is the error for the correlated matching algorithm, and the other lines were the error 

performances for the other algorithms. Note that error is slowly increasing up to this 

point as a result of non-linearities in the travel time shifts which are not accounted 

for by the linear model. 

Implementation Issues    For a small number of arrivals and a small number of 

beacons, it is practical to evaluate the objective function in (4.16) for all possible 
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Figure 4-11: Error comparison. 

choices of tm. For more than a few arrivals and beacons, however, the calculation 

would become cumbersome. Specifically, for N predicted arrival times and M meas- 

ured arrival times, the number of possible match vectors is: 

mm(/V,M) ^-j 
/ 

ntS     {M-n)\ 
\ 

N 

N -n 

\ 

(4.17) 

The summation is over the number of predictions which will be matched out of 

the total of N predictions. The maximum number of matches possible is the lower 

of N and M. There are n predictions which must be matched from the M possible 

measurements giving the ij^} y_ term.   This leaves N — n unmatched predictions, 
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Figure 4-12: Number of possible matches. 

/ \ 
N 

which may be chosen in 

N-n 

ways.  In the example problem which has been 

considered, there were seven predicted arrivals and typically seven measured arrivals. 

In this situation, there would be 130,992 possible combinations which would have to 

be evaluated. Fig. 4-12 shows the scaling of the number of possible matches with 

the number of predicted and measured arrivals. It is assumed in the graph that the 

number of predicted and measured arrivals is the same. 

In an experiment with multiple receivers in the water, the arrival times at any 

one receiver contain information about the whole environment and therefore about the 

arrival times at all other receivers. This means that the objective functions for all the 

receivers must be evaluated together. As a result, the total number of matches which 
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must be tried is the product of the numbers of matches for each of the individual 

receivers. It is clear that for systems beyond a very limited size, this can become 

cumbersome. 

Most of the possible matches, however, are quite obviously wrong. For example, 

the first arrival in the predicted multipath sequence is unlikely to be matched with the 

last arrival in the measured sequence, and the value of the objective function for such 

a match reflects this. As a result, the set of possible matches can be quickly pruned 

using a branch-and-bound algorithm [31]. In such an approach the match vector tm 

is constructed one element at a time. As each element is matched, upper and lower 

bounds can be found for the objective function value for the best match among all 

possible matches for the remaining undecided elements. An upper bound is the value 

obtained by assuming that all remaining undecided arrivals find measurements equal 

to their expected values. A lower bound is the value obtained by assuming that all 

remaining undecided arrivals are unmatched. Using these bounds, a branch-and-bound 

algorithm is able to quickly search out the optimal choice of tm. Fig. 4-13 shows the 

number of active branches in the search tree as a function of depth through the tree 

for the matchings generated in Fig. 4-10. At small depths, the tree grows, though not 

nearly as fast as it would if there were no pruning. At the greater depths near the 

end of the tree, the bounds on each branch tighten, enabling more pruning, and the 

tree width actually begins shrinking. Overall, the total number of trial matches which 

must be evaluated is far smaller than it would be for an exhaustive search. 
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Figure 4-13: Width of tree. 

4.6    Advantage of the Correlated Matcher 

The systems described in this thesis seek to invert a linearized forward model of the 

form 

t = Cx + n, (4.18) 

where t is the difference between the predicted and measured travel times, and 

x is the corresponding difference between the estimated and true parameters, where 

these parameters may be source position and time synchronization as described in 

chapter 2 or weights for an orthogonal function expansion of the sound speed profile 

as described in chapter 3. Associated with the measurement is a noise vector n, which 
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includes both true measurement noise as well as the travel time effect of unmodelled 

sound speed features and non-linearities. 

For the inversion to be successful, two conditions are necessary. First, it must be 

possible to accurately identify the measured arrivals with certain predicted eigenrays, 

since an incorrect ray path identification will lead to large estimation errors. Second, 

the travel time effect of the parameter change Cx must be larger than the noise 

n, otherwise the measurement will contain little information about x. These two 

conditions are shown graphically in Fig. 4-14. The horizontal axis of this figure is the 

standard deviation of the noise an divided by the time separation between adjacent 

arrivals T, and the vertical axis of this figure is the standard deviation of the travel 

time changes due to parameter variation ocx divided by the time separation between 

adjacent arrivals T. The vertically lined region is where the total standard deviation 

of travel time variation, including both parameter and noise effects, is greater than the 

separation between adjacent arrivals T. This is the region where identification tends 

to become unreliable by conventional methods. The horizontally lined region is where 

to travel time effect of parameter changes is smaller than the travel time effect of noise 

and therefore the inversion is poor. Thus with conventional matching algorithms, the 

system is limited to operation in the unshaded region labeled conventional tomography. 

While the difficulties of ray path identification for scenarios of larger travel time 

shifts has been noted in the literature [33], little effort has been devoted to improved 

identification algorithms. The disinterest in the problem seems to be due to the 

fact that conventional methods are often adequate for the early arrivals in the deep 

ocean where most ray-based tomography has occured.   In shallow water, however, 
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Figure 4-14:   Region where tomography is possible using standard arrival matching 

methods. 

ray path identification is more challenging.  An algorithm has been presented which 

fully utilizes the linear model for travel time shifts to allow arrival identification in 

cases where the parameter-induced travel time shifts may be larger than the time 

spacing between arrivals.   By accounting for the predicted linear shifts in arrivals, 

this correlated matching algorithm is able to identify arrivals correctly as long as the 

measurement noise (or non-linearities, which are treated by the model as measurement 

noise) are not larger than the arrival separations, even for large parameter induced 

travel time shifts. In Fig. 4-15, the vertically lined region is where arrival identification 

fails using the new correlated matching algorithm.   The horizontally lined region is 

where the inversion is poor due to the travel time effect of noise being larger than 

the travel time effect of the parameters of interest. With the new correlated matching 
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Figure 4-15: Region where tomography is possible using correlated matching method. 

algorithm, the system can operate in the unshaded region of Fig. 4-15 which is much 

larger than the region of operation using conventional matching techniques shown in 

Fig. 4-14. 

This expanded region of arrival identifiability has several useful applications. It 

makes tomographic inversions possible in environments which are changing quickly. 

In slowly changing environments, it makes it possible to do all arrival matching from 

a single initial prediction, instead of having to track arrival shifts. Unlike a tracking 

system, this system would contain no state, and therefore have no trouble recovering 

from false matchings. Finally, if an exhaustive search is to be done of a parameter 

space which is large enough to present significant non-linearity, it allows the parameter 

space to be carved up into fewer linear search regions than would be possible with 
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conventional matching techniques, since the size of the search regions is limited by the 

size of the non-linearity rather than a maximum acceptable size for linear shifts. 

4.7    Future Direction 

The demonstrations in this section have considered the problem of matching a single 

set of measured arrival times, or perhaps a set of measured arrival times enhanced 

by averaging over a period short enough that the parameter values remain constant. 

Tomography experiments, however, will run over a period of time where parameter 

values change significantly. Thus the problem of arrival matching becomes a problem 

of arrival tracking, which has some interesting solution techniques [1]. 

The most powerful matching technique presented in this section was the correlated 

matcher which used an objective function that fully exploited the linear model. The 

problem with the correlated matcher is that even using a branch and bound algorithm 

it is still rather slow. It may be advantageous, then, to consider some suboptimal 

matching search strategies that are faster than the branch and bound search. One 

possible approach to matching would be to begin with only the most certain of the 

matches, and then use the information obtained from the certain matches to achieve 

better accuracy in handling the less certain matches [41]. Some help may also be 

found in the image processing literature, where the matching problem appears in other 

contexts [17]. 
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4.8    Conclusion 

To perform a tomographic or position inversion, it is first necessary to identify the 

multipath arrivals in the received signal with physical paths through the environment, 

so that the sensitivity of each arrival to the various sound speed parameters can be 

determined. In deep ocean tomography, the time spacing between ray arrivals is 

typically large compared to the parameter induced changes in arrival times, so ray 

path identification is not difficult. In shallow water, however, ray path identification 

can be more challenging. An algorithm has been presented which allows tomography 

using rays where the parameter induced arrival time shifts may be larger than the time 

spacing between arrivals. The algorithm is also robust to the unexpected appearance 

and disappearance of subsets of the measured and predicted arrivals. 
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Chapter 5 

Test Experiments 

The examples in this chapter will tie together the various contributions of the thesis, 

and at the same time provide examples in simulation of recommended field trials. 

In section 5.1, the correlated matching algorithm will be used to enhance navigation 

accuracy where ambient noise and unknown bottom topography cause unexpected 

disappearance and appearance of arrivals. The simulation is designed to reflect what 

can be achieved with existing navigation hardware, so the arrival time measurements 

are made by a simulated wide-band narrow-band detector of the sort commonly used 

for acoustic navigation receivers. In section 5.2, vertical moving source tomography 

is demonstrated in a simulation which includes measurement noise, and accounts for 

errors introduced by the matching algorithms. 
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5.1    Multipath Navigation 

Acoustic positioning systems typically use the first acoustic arrival from each beacon 

to determine ranges to known beacon locations, and subsequent multipath arrivals 

are blanked out. As long as the first arrival is reliably present, these systems are 

dependable, but in many realistic positioning scenarios, the expected first arrival may 

be blocked by underwater obstacles or masked by noise. If a subsequent multipath 

arrival is mistaken for the missing first arrival, a position error will result [46]. 

One attempt at positioning in a fading multipath environment deployed extra 

redundant beacons and selected for each position estimate only those beacons whose 

travel times produced a mutually consistent position estimate. This made the system 

robust to the loss of first arrivals from a few of the beacons. [16]. When it is possible to 

predict where additional arrivals in the multipath structure will appear, the multipath 

arrivals can be used to produce a positioning system which is robust to fading without 

having to add redundant beacons. This thesis presents a positioning system which 

uses the full multipath structure of the received signal to make the system robust to 

the fading of individual arrivals. Localization based on multipath delays has been 

demonstrated by many authors [21, 24]. A unique feature of the system presented 

here is the ability to deal with missing arrivals and with travel time prediction errors 

which are larger than the arrival separation. 

The system determines its position by a two-step process. First, the detected ar- 

rivals in the multipath structure are identified with physical ray paths through the 

environment using the new correlated matching algorithm which is robust to the dis- 
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Figure 5-1: Block diagram of the multipath positioning system 

appearance of a subset of the predicted and measured arrivals. Then, the differences 

in arrival times between the measured arrivals and the predicted ray arrivals are used 

in a linear inversion to produce a position estimate. The multipath positioning system 

was developed for use in the shallow under-ice sound channel in the Arctic where the 

expected first arrival may fade in and out due to small changes in the sound speed 

profile [13, 2]. The operation of the system is simulated in a typical coastal environ- 

ment where arrivals become unexpectedly absent due to blocking by unknown bottom 

topography, and where a high ambient noise level often produces missed arrivals and 

false detections [14]. 

The structure of the multipath utilization algorithm is shown in Figure 5-1. The 

received acoustic signal is broken down into a set of ray arrival times by the arrival 

detector. At the same time, a ray tracing model predicts which eigenrays it expects to 

see based on its estimate of its current position. The arrival matcher tries to associate 

each of the predicted eigenrays with one of the detected arrivals, while allowing for 

the possibility that there may be some blocked arrivals or false detections. Once the 
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Figure 5-2: Positioning demonstration setup (top view) 

detected arrivals have been associated with eigenrays, arrival time prediction errors 

can be calculated as the differences between the detected arrival times and the arrival 

times predicted for the associated eigenrays. These arrival time prediction errors are 

used in an inversion to improve the position estimate [10]. 

Two important causes of positioning errors in conventional positioning system 

are missed arrivals or false arrivals caused by noise, and blocking of rays by bottom 

topography. A simulation was conducted comparing the performance of a conventional 

positioning system with the multipath system described here under such conditions. 
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5.1.1    Simulation of Noise Effects 

The simulation results presented here assume a receiver which uses a wide-band / 

narrow-band detector of the sort which is used in most acoustic releases and transpon- 

ders. In this system, the received signal is filtered by a wide band filter, and then hard 

limited. The output of the hard limiter has constant power. It is followed by a narrow 

band filter tuned to the beacon frequency. If most of the constant power in the limiter 

output is concentrated at the beacon frequency (as when the beacon signal is present), 

then a large signal comes out of the narrow band filter. If the constant power in the 

limiter output is evenly distributed over frequency (as when noise only is present), 

then a small signal comes out of the narrow band filter. A fixed threshold detector on 

the output of the narrow band filter is triggered by a certain signal-to-noise ratio at 

the limiter input, regardless of the absolute signal and noise levels. This wide-band 

/ narrow-band detector eliminates the need for careful gain readjustments when the 

system is moved to environments with different signal and noise levels and it is easy 

to implement in hardware so it is widely used for transponders and acoustic releases. 

This common circuit is chosen for this simulation to show that the new multipath nav- 

igation algorithm can be added with only a software modification to many existing 

navigation systems. The acoustical specifications for the simulated system are: 

• Source Level: 190dB re 1 //Pa 

• Ambient Noise Level: 130dB re 1 //Pa (Vehicle noise) 

• Ping Frequency: 10kHz 
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• Ping Duration: 3ms 

• Wide Band Filter: 8-16kHz, 8-Pole Butterworth 

• Narrow Band Filter: 9.7-10.3kHz (3dB Bandwidth), 2-Pole 

The relatively high ambient noise specification represents the noise environment 

for a positioning system mounted on an AUV. The largest sources of noise in this 

case are motors and gears (and sometimes noise from inductors in the switching DC 

to DC converters!) 

5.1.2    Simulation of Blocking 

Underwater obstacles can lead to the unexpected disappearance of one or more mul- 

tipath arrivals from the blocked source. This effect is introduced by placing a shallow 

region in the simulated environment. The underwater obstacle (a shallow region) and 

the beacons and receiver are arranged as described below. 

• Water Depth (Normally): 200m 

• Water Depth (Shallow Region): 150m 

• Shallow Region Width: 400m (along the acoustic path to the vehicle) 

• Beacon Depths (all 3 beacons): 175m 

• Receiver Depth: 50m 

• Sound Speed: 1500m/s 
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Figure 5-3: Ray blocking by shallow region 

The horizontal arrangement of the beacons and the shallow region is shown in 

Figure 5-2. 

The effect of the shallow region is to block some of the ray paths from the beacon 

which is behind it. The geometry of the positioning network is such that it doesn't 

effect the other two beacons. This blocking is shown in the ray trace in Figure 5-3. 

The eigenrays are shown for two source locations, 300m range (dotted lines) and 800m 

range (solid lines). Note that the bottom-reflected path is blocked at the longer range. 

As the vehicle continued to even longer ranges, eventually the direct path would also 

be blocked, leaving only the surface reflection. 
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5.1.3    Demonstration Plot 

The vehicle follows the path shown on Figure 5-2 traveling along a strait line from a 

position 200m from the first beacon to a position 1800m from the first beacon. In the 

left frame of Figure 5-4, the dashed line shows the magnitude of the position error at 

50 meter intervals for a conventional positioning system, and the solid line shows the 

error for the new multipath positioning system. The arrival times from each of the 

three beacons are shown to the right of the error to aid in understanding the cause of 

the errors. These times are shifted so that the direct path would come in at t = 0. The 

dots represent times when arrivals are expected (without knowing about the shallow 

region), and the circles represent times when arrivals were actually detected. At all 

locations and all times, the receiver is subject to noise-induced false detections. If a 

false detection precedes the first arrival, the conventional system will mistake it for 

the first arrival, resulting in a range error. Noise may also mask a true arrival. In this 

case, the conventional system mistakes a subsequent arrival in the multipath structure 

for the first arrival, resulting in a range error. In addition to these noise induced 

errors, there is loss of arrivals due to blocking by the shallow region. At ranges of 

500m and greater, the receiver is shielded from the bottom reflected arrival (second 

arrival) from Beacon 1. At ranges of 1000m and greater, the receiver is also shielded 

from the direct path arrival from Beacon 1 so the conventional system consistently 

makes position errors. Since the multipath positioning system uses multiple arrivals 

from each beacon, it is immune to the disappearance of arrivals which causes such 

large errors for the conventional system. 
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Figure 5-4: Error magnitude (in meters) for both systems, and arrival times of eigen- 

ravs from the three beacons 
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In summary, when the position of multipath arrivals can be predicted, the inform- 

ation provided by the multipath can be used to create a positioning system which is 

robust to the disappearance or unexpected appearance of a subset of the arrivals. The 

speed of the arrival matching algorithm and the fact that the system can utilize ex- 

isting conventional receiver electronics, make feasible the upgrading of many existing 

positioning systems with only a software change. 

5.2    Moving Source Tomography 

It was demonstrated in Chapter 3 that moving the acoustic source can focus tomo- 

graphic resolution at environmental features of interest, assuming that ray paths are 

identified correctly. An important question then is whether, with the possibility of 

ray path identification errors, a system can still achieve predicted performance levels. 

In this example, optimal source locations are found and the tomography problem is 

solved in a shallow water environment. Repeated trials allow characterization of the 

true system performance taking into account the effect of arrival matching errors. 

5.2.1     Estimator Options 

In the examples which follow, sound speed parameters, contained in a state vector, 

will be estimated over the course of a simulated mission. During a mission, the source 

will transmit K times, and is free to move vertically between transmissions. 

The state vector could be estimated recursively over the course of K iterations, 

with one iteration per source transmission. There would be three steps per iteration, a 
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prediction step in which the new vehicle state at the time of a transmission is predicted, 

a linearization step where a linear approximation of the relationship between arrival 

time change and state change is calculated centered about the current state estimate, 

and a correction step in which the measured arrival times are used to correct the state 

prediction. 

The recursive estimator provides the same final parameter estimate as would be 

obtained if all of the transmissions were taken together in a single inversion assuming 

the arrival matchings are the same. However, the matchings obtained in conjunction 

with a recursive estimator are often not the same as the matchings which would 

be obtained by taking all the arrivals together. At each iteration where a correct 

matching is made, information is obtained about the true parameter values. This 

means the predicted arrival times will be closer to the measured arrival times for the 

next iteration, and the matching will be more accurate. On the other hand, when an 

incorrect matching is made, a poor parameter estimate will be obtained, which will 

make the next matching even less reliable, though the estimated parameter covariance 

matrix will give no indication of this increasing parameter estimate error. Thus the 

recursive system will tend either to converge on a good environment estimate and 

good matchings or diverge resulting in continuing poor matchings. 

The recursive estimation process allows the matcher to utilize the correlations 

between arrival times from one transmission to the next by passing on an updated 

state estimate. It does not utilize the full arrival time covariance matrix, however. For 

example, it does not utilize the correlations between the travel time shifts in the last 

transmission and the first transmission to aid in matching for the first transmission. 
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For this reason, recursive estimators will generally perform worse than a one-time 

estimator using the correlated matching algorithm. 

The disadvantage of a one-time inversion using the correlated matching algorithm 

is the computational burden presented by the correlated matcher, and real-time im- 

plementations may want to consider obtaining an initial environment estimate using 

several transmissions simultaneously, with the number of transmissions incorporated 

in each inversion decreasing as the environmental estimate improves. For purposes of 

this simulation, however, the computational burden of the correlated matcher is not 

large, and so one-time inversions will be used. 

5.2.2    Experiment Description 

An acoustic source is attached to a cable crawler which is able to move vertically on 

a mooring cable. It is assumed in this example that the source position and transmit 

time are known. The receiver consists of a single hydrophone at a depth of 50m. The 

water depth is 200m in this simulation, and the source and receiver are separated by 

a 4000m range. 

Example 1: Two Parameters / Six Rays 

In the first example, the water between source and receiver is horizontally uniform, 

and the sound speed is described as a mean sound speed profile shown in the left half 

of Fig. 5-5, with the two variations represented by the basis functions in the right half 

of Fig. 5-5. The weights for these two variations are considered to be independent. 

In the example which follows the source will transmit twice, with the optimal depths 
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Figure 5-5: Mean sound speed profile and profile variations 

for transmission selected as in Chapter 3 to minimize the total variance throughout 

the environment, assuming a weight variance of one. The true weight values will 

be selected as independent identically distributed Gaussian random variables with 

variance a\. Based on the true parameter vector, the true ray travel times from each 

source location to the receiver will be determined. These true travel times will then be 

corrupted by adding measurement noise which is independent identically distributed 

Gaussian random variables with variance a\. The matching algorithms described in 

Chapter 4 will be employed to match measured and predicted arrivals, and an inversion 

will be performed based on the results of each matching. The parameter estimate error 

will be recorded for each inversion, and the estimate variance for each parameter will 

be determined experimentally by averaging the results of 1000 trials. These variance 
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estimates will be compared with the theoretical variance which is calculated based 

on the assumption of perfect matching, and the differences are analyzed for various 

values of o\ with crn — 0.001s. 

The optimal depth selection is shown in Fig. 5-6 to minimize the total weight 

error assuming a weight variance of one. Parameter estimates are formed for 1000 

trials. One test of how well the true system performance compares with the theoretical 

performance bounds is to determine what fraction of the parameter estimate errors 

falls within the theoretical one standard deviation limit. If the theoretical bound is 

correct, then this ratio should be 0.683. The ratio is shown in Fig. 5-7 for various 

values of az. The solid line indicates the ratios for the correlated matcher. The dashed 

line indicates the ratios for the uncorrelated matcher. The dash-dot line indicates the 

ratios for the validation window matcher, and the dotted line indicates the ratios for 

the order matcher. 

The correlated and uncorrelated matchers have equal ratios when the parameter 

variances are small, since the observed travel time shifts are uncorrelated being due 

mostly to noise. The measured ratios approach their theoretical values since all pre- 

dicted ray paths are present, non-linearities are small, and the probability of incorrect 

identifications is also small. 

As the parameter variances increase, three effects cause the ratio to decrease. First, 

some of the predicted arrivals may not have matches anymore among the measured 

arrivals due to fading. If the remaining matches are correctly matched, the estimate 

variance will still be larger than its theoretical value, since the information provided 

by the faded path has been lost. This results in a small decrease in the ratio. Second, 
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Figure 5-6: Optimal transmission depths 
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Figure 5-7: Fraction of errors lying within one theoretical standard deviation (should 

be 0.683) 
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some of the arrivals will begin to be incorrectly matched. An incorrect matching can 

cause a large inversion error, lowering the ratio. Third, when the parameter changes 

become large, non-linearities become important. These non-linearities have the effect 

of measurement noise, though they are not accounted for in the measurement noise 

covariance matrix. Thus, they make the effective measurement noise larger than the 

modeled measurement noise, and cause a decrease in the ratio. 

Note that the correlated matcher remains closer to its theoretical bound than any 

of the other matchers, due to its lower likelihood of making incorrect matches. It is, 

however, still subject to reductions in the ratio due to faded arrivals and non-linearity. 

Example 2: Eight Parameters / Nine Rays 

In this second example, The water between source and receiver is divided into 4 range 

segments, and within each segment, the sound speed is described as a mean sound 

speed profile shown in the left half of Fig. 5-8, with variations represented by the basis 

functions in the right half of Fig. 5-8. The weights for these variations are considered 

to be independent. 

The source will transmit three times. The optimal depth selection is shown in 

Fig. 5-9 to minimize the error in the estimate of parameter 6, the weight of the mid- 

column variation in the second range division from the left for cr^ = 10. The parameter 

estimate errors for the 1000 trials are shown for each parameter as pluses on Fig. 5-10. 

The horizontal axis is the parameter number. The even parameter numbers correspond 

to the mid-water variation and the odd parameter numbers correspond to the surface 

variation, with parameter numbers 1 and 2 corresponding to the range division nearest 
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Figure 5-8: Mean sound speed profile and profile variations 

the receiver and increasing toward the source. The theoretical standard deviations for 

a perfect matching are shown as lines.   These errors were based on <rz  =  1, and 

<7n = 0.00015. 

The fraction of the parameter estimates which have errors within one standard 

deviation is shown in Fig. 5-11 for various values of <rz. The solid line indicates 

the ratios for the correlated matcher. The dashed line indicates the ratios for the 

uncorrelated matcher. The dash-dot line indicates the ratios for the validation window 

matcher. 

In the first example there were a total of six rays sampling the environment and 

only two parameters to estimate. In this example, there are nine rays and eight 

parameters, so the inverse here is only slightly overdetermined.   Since there are so 
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Figure 5-9: Optimal transmission depths 
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Figure 5-10: Parameter estimate errors and theoretical standard deviation 
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Parameter standard deviation 

Figure 5-11: Fraction of errors lying within one theoretical standard deviation (should 
be 0.683) 
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many more parameters relative to the number of ray paths, the correlated matcher 

does not offer as large a benefit in performance as it did for the very over-determined 

case. 
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Chapter 6 

Conclusion 

This thesis contributes techniques and analysis tools for optimal moving source tomo- 

graphy in ray environments, as well as offering insights into the estimation problems 

which underly moving source tomography. 

The first problem in moving source tomography is determining where the sources 

are located. The standard navigation techniques of spherical and hyperbolic position- 

ing are shown to be two end points of a continuum of possible systems. It is then 

shown that hyperbolic systems can move along this continuum toward spherical per- 

formance limits if the time synchronization between the vehicle clock and the master 

beacon clock is estimated. A rule of thumb is given for when such time synchroniz- 

ing systems offer significant position accuracy improvement over hyperbolic systems. 

Finally, it is observed that navigation accuracy depends on both present and past 

vehicle positions, and optimal navigation is defined as the problem of determining the 

vehicle path from an origin to a destination such that the position estimate error is 

minimized upon reaching the destination. 
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The second problem in moving source tomography is representation and estimation 

of sound speed profile variability. The fundamental contribution of the thesis in this 

area is the derivation of ray sampling functions which describe the sensitivity of ray 

travel time variations to sound speed profile variations at any depth. These ray 

sampling functions allow the derivation of an optimal orthogonal function expansion 

for sound speed profile variability which leads to more accurate tomographic inversions 

than are possible with the commonly used method of empirical orthogonal functions. 

The ray sampling functions also allow derivation of a minimum variance reduced order 

estimator for the sound speed profile, which again offers improved performance over 

standard methods, particularly in the rejection of errors due to unmodelled profile 

variations. The ray sampling functions illustrate that tomographic resolution at a 

given region in the environment is highly dependent on source and receiver locations. 

This leads to posing the optimal moving source tomography problem of finding the 

locations where a moving source should transmit in order to minimize the variance of 

the sound speed estimate in a certain region of interest. 

The third problem in moving source tomography is ray path identification. Two 

new algorithms are presented for ray path identification. The common thread in both 

algorithms is that they incorporate the linear model for travel time variability that 

includes the effect of both parameter changes and noise. The better (though slower) 

of these two algorithms accounts for correlations between travel time shifts to allow 

accurate arrival identification over much larger ranges of parameter uncertainty than 

is possible with commonly used techniques. This algorithm enables tomography in a 

broader range of environments, and also enables moving source tomography where the 
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travel time changes due to source motion can thwart standard arrival identification 

techniques. 

The contributions of the preceding chapters are brought together in Chapter 5, 

which presents realistic simulations demonstrating the application of the algorithms. 

These simulations serve not only to demonstrate the capabilities of the algorithms 

developed in this thesis, but are also intended as suggestions for simple proof of 

concept demonstrations. 

Moving source tomography is a powerful tool for improving the information return 

from oceanographic experiments. Constraints of energy and time make it important 

to utilize moving sources in an optimal way. It is the author's hope that this thesis has 

added to our understanding of the moving source tomography problem, and that the 

techniques presented here will find useful application in efficient oceanographic and 

seismic imaging. 
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